# 1.1.1. Face-centered cubic (fcc)



## Atom arrangement

 Figure 1: Face-centered cubic lattice structure.

## Slip systems

 Figure 2: Slip system in face-centered cubic lattice.

 index slip direction plane normal 1 $[0 1 \bar 1]$ $(1 1 1)$ 2 $[\bar 1 0 1]$ $(1 1 1)$ 3 $[1 \bar 1 0]$ $(1 1 1)$ 4 $[0 \bar 1 \bar 1]$ $(\bar 1 \bar 1 1)$ 5 $[1 0 1]$ $(\bar 1 \bar 1 1)$ 6 $[\bar 1 1 0]$ $(\bar 1 \bar 1 1)$ 7 $[0 \bar 1 1]$ $(1 \bar 1 \bar 1)$ 8 $[\bar 1 0 \bar 1]$ $(1 \bar 1 \bar 1)$ 9 $[1 1 0]$ $(1 \bar 1 \bar 1)$ 10 $[0 1 1]$ $(\bar 1 1 \bar 1)$ 11 $[1 0 \bar 1]$ $(\bar 1 1 \bar 1)$ 12 $[\bar 1 \bar 1 0]$ $(\bar 1 1 \bar 1)$

## Twin systems

 index slip direction plane normal 1 $[\bar 2 1 1]$ $(1 1 1)$ 2 $[1 \bar 2 1]$ $(1 1 1)$ 3 $[1 1 \bar 2]$ $(1 1 1)$ 4 $[2 \bar 1 1]$ $(\bar 1 \bar 1 1)$ 5 $[\bar 1 2 1]$ $(\bar 1 \bar 1 1)$ 6 $[\bar 1 \bar 1 \bar 2]$ $(\bar 1 \bar 1 1)$ 7 $[\bar 2 \bar 1 \bar 1]$ $(1 \bar 1 \bar 1)$ 8 $[1 2 \bar 1]$ $(1 \bar 1 \bar 1)$ 9 $[1 \bar 1 2]$ $(1 \bar 1 \bar 1)$ 10 $[2 1 \bar 1]$ $(\bar 1 1 \bar 1)$ 11 $[\bar 1 \bar 2 \bar 1]$ $(\bar 1 1 \bar 1)$ 12 $[\bar 1 1 2]$ $(\bar 1 1 \bar 1)$

Topic attachments
I Attachment Action Size Date Who Comment
png FCC_crystal_structure.png manage 173 K 17 Oct 2012 - 13:52 PhilipEisenlohr face-centered cubic
svg FCC_crystal_structure.svg manage 2 K 17 Oct 2012 - 13:52 PhilipEisenlohr face-centered cubic (vector-based)
png FCC_slip_system.png manage 214 K 17 Oct 2012 - 14:12 PhilipEisenlohr face-centered cubic slip system
svg FCC_slip_system.svg manage 2 K 17 Oct 2012 - 14:13 PhilipEisenlohr face-centered cubic slip system (vector-based)
This topic: Documentation > Background > CrystalLattice > FCC
Topic revision: 23 Feb 2016, FranzRoters
Copyright by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding DAMASK? Send feedback
§ Imprint § Data Protection