Features

Linear elasticity


parent_gray

Stress-strain relationship

The connection between strain and stress is based on the Green-Lagrange strain $\tnsr E$ and its work-conjugate, the second Piola-Kirchhoff stress $\tnsr S$. \begin{align} \label{eq:Hooke} \tnsr S &= \tnsrfour C : \tnsr E = \frac{1}{2} \tnsrfour C : \left({\tnsr F_\text e}^\text T \,\tnsr F_\text e - \tnsr I\right) \end{align}

Tangent $\partial\tnsr S / \partial \tnsr F_\text e$

The derivative of the second Piola-Kirchhoff stress with respect to the elastic deformation gradient is required in the implicit stress calculation. For simpler analysis we conceptually split the fourth order stiffness tensor $\tnsrfour C$ into a product of two second order tensors $\tnsr A \otimes \tnsr B$ (cf. tensor notation scheme). \begin{align*} \tnsr S,{\scriptscriptstyle\tnsr F_\text e} &= \left[\frac{1}{2} (\tnsr A \otimes \tnsr B) : \left({\tnsr F_\text e}^\text T \,\tnsr F_\text e - \tnsr I\right)\right],_{\scriptscriptstyle\tnsr F_\text e} \\ &= \frac{1}{2} \left[(\tnsr A \otimes \tnsr B) : \left({\tnsr F_\text e}^\text T \,\tnsr F_\text e\right)\right],_{\scriptscriptstyle\tnsr F_\text e} \\ &= \frac{1}{2} \left[\tnsr A \left(\tnsr B : {\tnsr F_\text e}^\text T \,\tnsr F_\text e\right)\right],_{\scriptscriptstyle\tnsr F_\text e} \\ &= \frac{1}{2} \tnsr A \odot \left[ \tnsr B : \left({\tnsr F_\text e}^\text T \,\tnsr F_\text e\right)\right],_{\scriptscriptstyle\tnsr F_\text e} \\ &= \frac{1}{2} \tnsr A \odot \left( \tnsr B \dblContInOut \left[{\tnsr F_\text e}^\text T \,\tnsr F_\text e\right],_{\scriptscriptstyle\tnsr F_\text e}\right) \\ &= \frac{1}{2} \tnsr A \odot \left( \tnsr B \dblContInOut \left(\tnsr I\boxtimes\tnsr F_\text e + {\tnsr F_\text e}^\text T\otimes\tnsr I \right)\right) \\ &= \frac{1}{2} \tnsr A \odot \left( \tnsr F_\text e \tnsr B^\text T + \tnsr F_\text e \tnsr B\right) \\ &= \frac{1}{2} \tnsr A \odot \left( \tnsr F_\text e \left(\tnsr B^\text T + \tnsr B\right) \right) \end{align*} Due to the symmetry of the stiffness tensor, there is $\tnsr B^\text T=\tnsr B$ and one obtains \begin{align} \tnsr S,{\scriptscriptstyle\tnsr F_\text e} &= \tnsr A \odot \left( \tnsr F_\text e \tnsr B^\text T\right) \end{align} It is useful to rewrite this equation in index notation. \begin{align} \frac{\partial S_{ij}}{\partial {F_\text e}_{kl}} \vctr g^i \otimes \vctr g_k \otimes \vctr g_l \otimes \vctr g^j &= A_{ij} {F_e}^{km} B^{l}_{\cdot m} \, \vctr g^i \otimes \vctr g_k \otimes \vctr g_l \otimes \vctr g^j \\ &= C_{ij\cdot\cdot}^{\phantom{ij}lm} {F_e}_{\cdot m}^{k} \, \vctr g^i \otimes \vctr g_k \otimes \vctr g_l \otimes \vctr g^j \end{align}

This topic: Documentation > Background > Elasticity > Hooke
Topic revision: 22 Jan 2014, ChristophKords
This site is powered by FoswikiCopyright by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding DAMASK? Send feedback
§ Imprint § Data Protection