Acknowledgment

The notation of tensors and operators is largly adopted from O. Kintzel & Y. Başar (2006). One notable exception is the notation change from $\tnsr A \times \tnsr B$ to $\tnsr A \odot \tnsr B$ for one particular second order tensor product (see below).

Notation scheme

Scalars $x$, vectors $\vctr v$, second order tensors $\tnsr A$, fourth order tensors $\tnsrfour B$, and basis vectors $\vctr g$.

Tensor products

\begin{eqnarray*} \tnsrfour C &= \tnsr A \otimes \tnsr B &= A^{ij} B^{kl}\,\vctr g_i\otimes\vctr g_j\otimes\vctr g_k\otimes\vctr g_l \\ \tnsrfour C &= \tnsr A \odot \tnsr B &= A^{ij} B^{kl}\,\vctr g_i\otimes\vctr g_k\otimes\vctr g_l\otimes\vctr g_j \\ & &= A^{il} B^{jk}\,\vctr g_i\otimes\vctr g_j\otimes\vctr g_k\otimes\vctr g_l \\ \tnsrfour C &= \tnsr A \boxtimes \tnsr B &= A^{ij} B^{kl}\,\vctr g_i\otimes\vctr g_k\otimes\vctr g_j\otimes\vctr g_l \\ & &= A^{ik} B^{jl}\,\vctr g_i\otimes\vctr g_j\otimes\vctr g_k\otimes\vctr g_l \end{eqnarray*}

Double contraction

\begin{eqnarray*} \tnsrfour C &= \tnsrfour A :\tnsrfour B &= A^{ijkl} B_{klmn}\,\vctr g_i\otimes\vctr g_j\otimes\vctr g^m\otimes\vctr g^n \\ \tnsr C &= \tnsrfour A \dblContInOut \tnsr B &= A^{ijkl} B_{jk}\,\vctr g_i\otimes\vctr g_l \\ \tnsr C &= \tnsr A \dblContInOut \tnsrfour B &= A_{il} B^{ijkl}\,\vctr g_j\otimes\vctr g_k \\ \tnsrfour C &= \tnsrfour A \dblContInOut \tnsrfour B &= A^{ijkl} B_{jmnk}\,\vctr g_i\otimes\vctr g^m\otimes\vctr g^n\otimes\vctr g_l \\ \tnsr C &= \tnsrfour A \dblContOutIn \tnsr B &= A^{ijkl} B_{il}\,\vctr g_j\otimes\vctr g_k \\ \tnsr C &= \tnsr A \dblContOutIn \tnsrfour B &= A_{jk} B^{ijkl}\,\vctr g_i\otimes\vctr g_l \\ \tnsrfour C &= \tnsrfour A \dblContOutIn \tnsrfour B &= A^{ijkl} B_{miln}\,\vctr g^m\otimes\vctr g_j\otimes\vctr g_k\otimes\vctr g^n \end{eqnarray*}

Fourth order identity tensors

\begin{align*} \tnsrfour I &= \tnsr I\otimes\tnsr I = \vctr g_i\otimes\vctr g^i\otimes\vctr g_j\otimes\vctr g^j \\ \tnsrfour I^\text R &= \tnsr I\boxtimes\tnsr I = \vctr g_i\otimes\vctr g^j\otimes\vctr g^i\otimes\vctr g_j \\ \tnsrfour I^\text L &= \tnsr I\odot\tnsr I = \vctr g_i\otimes\vctr g_j\otimes\vctr g^j\otimes\vctr g^i \end{align*}

Tensor derivatives

\begin{align*} \tnsr A,_{\scriptscriptstyle\tnsr B} &= \frac{\partial A_{ij}}{\partial B_{kl}}\,\vctr g^i\otimes\vctr g_k\otimes\vctr g_l\otimes\vctr g^j \end{align*} \begin{align*} \tnsr A,_{\scriptscriptstyle\tnsr B} &= \tnsr A,_{\scriptscriptstyle\tnsr C}\dblContInOut\tnsr C,_{\scriptscriptstyle\tnsr B} \\ (\tnsr A \tnsr B),_{\scriptscriptstyle\tnsr C} &= \tnsr A,_{\scriptscriptstyle\tnsr C}\tnsr B + \tnsr A\tnsr B,_{\scriptscriptstyle\tnsr C} \\ (\tnsr A : \tnsr B),_{\scriptscriptstyle\tnsr C} &= \tnsr A,_{\scriptscriptstyle\tnsr C}\dblContOutIn\tnsr B + \tnsr A\dblContInOut\tnsr B,_{\scriptscriptstyle\tnsr C} \\ (f \tnsr A),_{\scriptscriptstyle\tnsr C} &= \tnsr A\otimes f,_{\scriptscriptstyle\tnsr C} + f\tnsr A,_{\scriptscriptstyle\tnsr C} \end{align*}


parent_gray

References

[1]
O. Kintzel & Y. Başar
Fourth-order tensors – tensor differentiation with applications to continuum mechanics. Part I: Classical tensor analysis
Z. angew. Math. Mech. 86 (2006) 291–311

This topic: Documentation > Background > TensorNotation
Topic revision: 20 Jan 2014, PhilipEisenlohr
This site is powered by FoswikiCopyright by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding DAMASK? Send feedback
§ Imprint § Data Protection