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Nomenclature

Latin Letters

Symbol
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Description

abort criterion

body

BURGER's vector

left CAUCHY—GREEN deformation tensor
right CAUCHY—GREEN deformation tensor
stiffness tensor

YOUNG's modulus

GREEN-LAGRANGE strain tensor
EULER—ALMANSI strain tensor

FOURIER transform

deformation gradient

GREEN's function

HEAVISIDE function

displacement gradient

inverse displacement gradient

identity, unit matrix

JACOBIan determinant of the deformation gradient
2" invariant of the deviatoric part of the CAUCHY stress
angular frequency

side length

velocity gradient

TAYLOR factor

number of sampling points

15t P1oLA-KIRCHHOFF stress tensor

microstructure parametrization (slip resistance r for the used models)

rotation tensor

compliance tensor

2" ProLA-KIRCHHOFF stress tensor
line direction

displacement

Unit

Pa
Pa
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right stretch tensor
left stretch tensor
coordinates in reference configuration

coordinates in current configuration

Greek Letters

Symbol

E\}*IQTE‘=|~2m|>§q°"

Description

unit impulse function
KRONECKER delta

deviation

CAUCHY strain tensor

shear strain

I'-operator for GREEN's function
frequency

PoOISsSON ratio

CAUCHY stress tensor, infinitesimal stress tensor

polarization field
shear stress

rotation

Superscripts

Symbol  Description
! deviatoric part of a tensor
derivative with respect to time
~ fluctuating part of a quantity
- average quantity, negative quantity for MILLER indices
~ quantity in FOURIER space
@ slip system
15} twin system
m iteration counter
Subscripts
Symbol  Description
0 quantity in reference configuration
e elastic part
) plastic part
ref reference value
t quantity in current configuration
vM VON MISES equivalent of a tensorial quantity

Unit

Hz

Pa
Pa
Pa
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1 Introduction

Higher requirements on the mechanical properties of construction materials are needed in applica-
tions in all kinds of engineering. The growing demands led to an enormous variety of alloying con-
cepts to produce metallic materials with the desired specifications. The outstanding performance
of recently developed alloys is based on interactions on the scale of the microstructure. Most of the
effects are related to the interaction of different phases, phase changes, dislocation movement and
twinning.

The mechanical properties of materials are not only

derived from experiments, but also examined using com-

puter assisted simulations. The simulation of mechanical

behavior is often done on a volume element (VE) with a

representative structure for the material. That means, a

representative volume element (RVE) predicts the behav-
ior of a body made out of the material. Usually, periodic
boundary conditions (BCs) are enforced on each side of
the RVE. They expand the volume under consideration
to an infinite body by repeating it infinitely [10]. An ex-
emplary VE consisting of 50 grains is shown in fig. 1.1.

Since interactions in the microstructure are responsi-

ble for the performance of the material, the knowledge Figure 1.1: Volume element consisting of
of the underlying physics is becomming more and more 20 periodically repeating grains
important for the simulation of the mechanical behavior.
For a single-phase alloy, even a simple constitutive law will quite accurately predict results. To
simulate the behavior of a complex material, the underlying effects such as interaction of differ-
ent phases, phase changes, dislocation mobility, twinning etc. have to be considered in order to
produce applicable results [29].

One of the crucial points in using simulations is the time spent on calculations. For a complex
microstructure a very detailed description is needed. Even fast computers take a long time to
complete the calculation. The most commonly used technique for solving partial differential
equations (PDEs) describing the mechanical behavior is the “Finite Element Method” (FEM) [2,
29, 31, 35]. For VEs with periodic BCs the so-called spectral methods are a fast alternative to
the FEM [4, 32].

In this thesis, the implementation of a spectral method using the fast FOURIER transform (FFT)
around an existing framework for crystal plasticity FEM (CPFEM) is described. The spectral

method serves as an alternative for the FEM-based solvers to the calculation of VEs with periodic



BCs. The framework and the spectral method are written in Fortran.

The general idea of using spectral methods for mechanical boundary value problems was intro-
duced by H. MOULINEC and P. SUQUET in 1998 [18, 19]. Further development was done by
S. NEUMANN, K. P. HERRMANN and W. H. MULLER [6, 22] and R. A. LEBENSOHN [14].
Extensions capable of handling large strain formulations were presented by N. LAHELLEC, J. C.
MicHEL, H. MOULINEC, and P. SUQUET in 2001 [17].

An implementation of the algorithm was used by R. A. LEBENSOHN and A. PRAKASH to
evaluate the performance of the method. The promising results of their study show significantly
decreased computation time compared to a standard FEM. While the results for almost homo-
geneous deformations were close to the results achieved by FEM, the shape update algorithm
presented there is not suitable for locally extremely distorted morphologies [25].

This thesis presents an implementation is shown that overcomes the limits of the former method
concerning the shape update. Moreover, it is integrated in a flexible framework to handle arbitrary
material models. To speed up the calculations, particular care was taken to implement a fast
algorithm. Due to the fast computations, the VE can have a size which is large enough to
be considered as representative for the material. Thus, the simulation can serve as a "virtual
laboratory” to derive the parameters describing the mechanical behavior of a material.

In this work, first a mathematical framework is introduced in chapter 2 to describe deformations
of bodies under load. In chapter 3 the deformation mechanisms of crystal materials are explained
as they are important to derive suitable constitutive laws. A selection of constitutive models are
also presented in this chapter. In chapters 4 and 5 the mathematical background of the spectral
method, GREEN's function method and FOURIER transform are briefly recapitulated. The basic
concept of spectral methods and their application to mechanical boundary value problems is
outlined in chapter 6. In chapter 7 the details of the implementation are described. Results of
some completed simulations are given in chapter 8. The thesis ends with a summary and the

conclusions drawn from the work. The last chapter, chapter 9, gives an outlook on further work.



2 Continuum mechanics

The theory of continuum mechanics describes the global mechanical behavior of solids and fluids.
In continuum mechanics, a hypothetic continuous medium is used to describe the macroscopic
behavior of an object. According to the assumption of a continuous medium, the material of the
object completely fills the space it occupies. It is not possible to model empty spaces, cracks
or discontinuities inside the material. Therefore, the atomic structure of materials cannot be
described. The concept of an continuous medium allows us to describe the behavior of the
material with continuous mathematical functions. In this work, it is used to describe the behavior
of solid materials under external forces and applied displacements.

In this chapter, at first the different configurations of a body under load are shown (section 2.1).
From the configurations, strain (section 2.2) and stress (section 2.5) measures are derived. This

chapter is mainly based on [29, 34].

2.1 Configurations

A continuous body B can be described

as a composition of an infinite number of

F = grad(y(x,t))

material points or particles z, with z € B.

The body in the undeformed configura-

tion occupies the region By. This config- Undeformed
uration is also called the reference con- configuration
figuration. The reference configuration
does not depend on time. In the time-
dependent deformed state, the body oc-

cupies the region B;. This configuration

is called the deformed configuration or the e; Deformed

current configuration. The location of the configuration
material points in the undeformed state is
given by the vector & and in a deformed
state by the vector y. Two example con- Figure 2.1: Continuum body shown in undeformed and
figurations are shown in fig. 2.1. In each deformed configurations!
configuration a different base with corre-

sponding unit vectors exists. In this work, the same coordinate system with the same unit vectors

!File taken from http://commons.wikimedia.org/wiki/File:Continuum_body_deformation.svg, accessed
14™ November 2010. The copyright information can be found in appendix C.
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is used in both configurations. This allows us to write down the tensors without explicitly notating
the unit vectors.

A deformation can be described in both configurations. In the material description, each particle
belongs to its current spatial location. This is also called LAGRANGian description. The spatial
description is also called EULERian description. In EULERian description, the location belongs
to the particle. Loosely speaking, the LAGRANGian description answers the question “At which
location is the particle?”, while the EULERian description answers the question “Which particle
is at the location?”. As usual in structural mechanics (and in contrast to fluid mechanics), in this

work a LAGRANGian description is used.

2.2 Deformation and strain measures

The displacement u of a material point is the difference vector from a point in reference con-

figuration to the deformed configuration:
u(xz,t) =y(x,t) —x (2.1)

u must be a continuous function. For a given time—that is a given deformation state—the
equation reads u(x) = y(x) — x.
A line segment dx in an infinitesimal neighborhood of a material point « in the reference

configuration is transformed into the current configuration by:
dy 2
y(x)+dy = y(x) + e dz + O(dz”) (2.2)
By neglecting terms of higher order, dy can be written as:

dy:g—z-dm:F-dm (2.3)
where F := 9y/0x is a 2" order tensor called deformation gradient. It is also denoted grad(y).
The relations between vectors and tensors in the different configurations are graphically shown in
fig. 2.1. The deformation gradient maps the vector dx at « in the reference configuration to the
vector dy at y in the current configuration. The deformation tensor has one base in the reference
configuration and one in the current configuration. It is therefore called a 2-point tensor.

The inverse of the deformation tensor F~! maps an element from the current configuration to
the reference configuration. It is sometimes called the spatial deformation gradient, while F' is
called the material deformation gradient. The spatial line segment dy is called the “push forward”
of the material line segment dz, which in turn can be called the “pull back” (performed by F~1)
of dy.

Inserting eq. (2.1) into eq. (2.3) results in the deformation gradient written as:

Oz +u)
F = ~ (2.4)
=1+ g—z (2.5)



H := 0u/0x is called the displacement gradient. The tensor I is the identity or unit matrix.

Displacement gradient and deformation gradient are a means of describing the deformation of a
body. In the same way as F' is called the material deformation gradient, H is called the material
displacement gradient. The spatial displacement gradient is defined as I — F~! and denoted
as H;.

Deformation gradient, displacement gradient and their respective inverse are 2-point tensors. It

is also possible to describe the deformation in the reference configuration only by:

dy-dy = (F -dx) - (F - dx) (2.6)
=dz- (F' - F) dz (2.7)

C = FT' . F is called the right CAUCHY-GREEN deformation tensor. It is a symmetric tensor
completely in the material (reference) configuration.

The change of length (the strain) under a deformation can be expressed as:

dy-dy—de-de=dz-C -dzr—dx- dz (2.8)
—dz-(C—1I) dz (2.9)
=dx - (2E))-dx (2.10)

Ey:=iC-1) = %(FT - F —1I) is called the GREEN-LAGRANGE strain tensor. It depends
only on the right CAUCHY—GREEN deformation tensor, and is therefore also completely in the

reference configuration.

A similar transform as in eq. (2.6) can express the deformation in the current configuration:

de - de = (F1.-dy) - (F'-dy) (2.11)
=dy-(FT.-F!).dy (2.12)

B ':=F T.Flleadsto B = F - FT. The tensor B is called the left CAUCHY—GREEN

deformation tensor. It is a symmetric tensor completely in the spatial (current) configuration.

The change of length under a deformation can be expressed as:

dy -dy—de-de=dy-dy —dy- B! .dy (2.13)
=dy-(I-B™)-dy (2.14)
—dy- (2B,)-dy (2.15)

Ey:=1I-B7 ') =3(I-F T.-F7')is called the EULER—ALMANSTI strain tensor. As a product
of the left CAUCHY—GREEN deformation tensor it is completely in the current configuration.

The push forward and pull back are also defined for the deformation measures. The push forward
of the GREEN-LAGRANGE stretch tensor is the EULER—ALMANSI stretch tensor, while the pull

5



back performs the inverse operation:

E.=F1.E,. F! (2.16)
Ey=F" . E, F (2.17)

For small strains, i.e. y — x ~ 0, the linearization of the EULER—ALMANSI strain tensor and
the GREEN-LAGRANGE strain results in the same strain tensor. It is called the CAUCHY strain
tensor €. It reads as:

1
Eij = 5(1%‘,]‘ + ;i) = Eogj = Eyj (2.18)

when using index notation and EINSTEIN convention?. In vector notation it reads as:

€= %(Vu + (Vu)b) (2.19)

With the nabla-operator V and w := 1(Vu — (Vu)T) denoted the rotation tensor, the displace-

ment gradient can be written in the infinitesimal strain framework as:
Vu=¢€+w. (2.20)

For the one-dimensional case without lateral contraction, the deformation can be described
by two variables: The length in the current configuration Iy and the length in the reference
configuration lp. By defining the stretch ratio as A\ := [;/lp the corresponding strain measures

and the limits for infinite tension and infinite compression read as:

Table 2.1: Definition of strain measures and behavior for tension and compression

strain measure definition compression tension
GREEN-LAGRANGE strain = Eg 14im = 3(A2 — 1) lim Eg1qim = —3  lim Eg14im = 0
’ A—0 ’ A—o00 ’
EULER-ALMANSI strain By 1dim = 5(1 — 32) iim E; 1d4im = —00 Alim Ei1dim = 3
’ -0 —oo
CAUCHY strain  g1gijm = A — 1 lim e14im = —1 lim e1gim = 00
A—0 A—00

From tab. 2.1 it can be seen that the measures are not symmetrical and reach different limits
for infinite tension and infinite compression. A measure that overcomes these inconsistencies is
the logarithmic strain €1, = In(\). Tension or compression applied at the same rate (section 2.4)
for a given time will result in a logarithmic strain which differs only in the algebraic sign. The
different strain measures for the one-dimensional case are shown in fig. 2.2.

For the spatial and material case, different strain measures with power n of A can be derived.
Both measures are based on the formula 1/a(1 — A™%). For the material measures, the exponent
« has a negative sign, for the spatial measures a positive one. From tab. 2.1 it can be seen that A
contributes with its second power to the GREEN—LAGRANGE and the EULER—ALMANSI strain.

The strain measure of order 0 is the logarithmic strain [34].

2According to EINSTEIN notation or EINSTEIN summation, it is implicitly summed over an index variable that
appears twice in a product.
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Figure 2.2: Behavior of different strain measures for tension and compression

In the multidimensional case the calculation of the different strain measures must be conducted

in the principal coordinate system, i.e., in the basis of eigenvectors.

2.3 Polar decomposition

Each tensor can be decomposed into a component of pure stretches and a pure rotation. For
an invertible tensor the decomposition is unique and can be expressed by two forms. For the

deformation gradient, the decomposition reads as:
F=V.-R=R-U (2.21)

where R is the rotation tensor, v is called the left stretch tensor and U the right stretch tensor.

It can be shown that U? = C and V? = B with B being the left and C the right CAUCHY
GREEN deformation tensor. While F' is a 2-point tensor, U is in material configuration and V'

in spatial configuration only. They have all the same determinant J, called the JACOBIan:
J =det(F) = det(U) = det(V) (2.22)

A pure rotation does not change the shape of the body and should therefore result in zero strain.
The polar decomposition can be used to check whether a strain measure is valid. The framework
for large deformations, also called “finite strain framework” presented here is able to describe
large deformations properly. It can be shown that the small strain formulation (infinitesimal strain
formulation) does not fulfill this requirement for large deformations and is therefore not suitable

to describe them.

A summary of the polar decomposition of the deformation gradient and the derived deformation

tensors is given in tab. 2.3.



2.4 Velocity gradient

For a moving body, the position of the material points vary with time. The material velocity field

is defined as:
du(x)

dt
2 = gy holds because the points in the reference configuration do not change their position, i.e.,
da/dt = 0. The spatial gradient of the velocity field is:

v — i =y (2.23)

(2.24)

L is called the velocity gradient. Loading a body with a constant velocity gradient will result in

the same rate of deformation independently of the shape in the current configuration.

2.5 Stress measures

Stress is defined as force per area. As introduced in section 2.1, in nonlinear continuum mechanics
a distinction has to be made between the reference and the current configuration. As a result,
different stress measures exist, depending on the configuration in which force and area are defined.

In the current configuration, a force Ar; on an area Aat with normal vector n; results in:

A’l’t
ti(ny) = lim — 2.25
t(m) Aay—0 Aay ( )
where t; is called the vector of surface traction or CAUCHY traction. The CAUCHY stress tensor

or “true stress tensor” o is defined as:
te(y. t.ny) = o(y,t) -y (2.26)

The CAUCHY stress is a 2"? order tensor in spatial coordinates.

The traction t; is defined on the the current area (Aa; — 0). Scaling it to the area in reference
configuration Aag results in the pseudo traction vector to;. It is also called nominal or 1%
P1oLA—KIRCHHOFF traction vector. It can be determined by looking at an infinitesimal force
dry:

drt = tt dat = t07t dao (2.27)

The vector notation of the areas in the reference configuration, or the current configuration is
day = nyday and dag = ng dag. According to [34] the deformation of an area can be expressed
by da; = J F~T - dag. This allows the transformation of eq. (2.27) and eq. (2.26) into:

toy = (Jo-F~ 1) ng (2.28)

The product of the two 2"? order tensors and the JACOBIan is called the 1%t P1oLA-KIRCHHOFF

stress P:
P=Jo -F T (2.29)



Like F' it is a 2-point tensor (one base in spatial base and one in material base). It is a non-
symmetric tensor of 2" order. It relates the force in the deformed configuration to an oriented
area vector in the reference configuration.

To get a stress measure in the current configuration only, the resulting force dry in reference

configuration can be written as:
drg=F~'.dry = F~ 't dag (2.30)

to .= F! -t is called the 2" P1oLA-KIRCHHOFF traction vector. It can be shown that
to=(JF to-F1)ng. Thetensor S := (J F~'.0-F~ 1) is called the 2"¢ P1oLA-KIRCHHOFF
stress tensor. It is a pure material, symmetric tensor of 2" order. The 2" P1oLA-KIRCHHOFF
stress tensor is the pull back of the CAUCHY stress tensor.
The different stress measures and the corresponding strain measures are summarized in tab. 2.2.
All stress measures are tensors of 2"! order. In the three-dimensional case they consist of
nine components, of which all (for non-symmetric tensors) or six (for symmetric tensors) are
independent. Different approaches exist to express the stress state in one variable that can be
compared to uniaxial stress, coming from tensile test for example. The most common approach
is the VON MISES equivalent stress o). It is based on the hypothesis that the material state is
solely dependent on the change of shape. Or in other words, hydrostatic compression or expansion
of the volume is not important for describing the stress state. Mathematically it can be expressed
by ouvm = v/3J2, with Jo being the 2™ invariant of the deviatoric part o’ of the stress tensor o.

Experiments have shown that the assumption fits well for ductile materials [15].

2.6 Constitutive relation

A constitutive equation relates the response of a material to an external load. In continuum
mechanics, it usually gives the connection between stress and the resulting deformation. Without
a constitutive equation, the equations describing the mechanical behavior of a material cannot be
solved.

A wide range of constitutive relations exist for describing the relation between stress and strain
in materials. While some of them—called phenomenological laws—are based on measurements
only, others try to describe the underlying physics.

Complex constitutive laws need several variables to characterize the material state and its re-
sponse to the load. Before deriving constitutive laws that are suitable to describe the material
response accurately enough to be used in crystal plasticity, a closer look at the mechanical behavior
of crystalline structures is needed. In the following chapter some fundamentals about deformation
mechanisms in crystalline structures are given. The constitutive models used in this work are

derived from this underlying physics. They are also introduced in chapter 3.
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3 Mechanical behavior of crystalline structures

In chapter 2, a mathematical framework describing deformations of a body was introduced. The
cause of the deformation, a force (or stress), is connected via a constitutive law to the deformation.
The origin of the deformation is so far not included in that framework. In material mechanics, it is
important to take a closer look on the origin of the deformation. In this chapter, the fundamentals
needed to model the mechanical response of crystalline structures are briefly discussed and the

derived constitutive models are introduced.

3.1 Crystalline structures

The binding forces in metallic bonding between metal atoms are undirected. This leads to atomic
arrangements with the maximum filling in space, the tightest dimensional packing. For a pure
metal without any foreign atoms, two closest packages are possible: the face-centered cubic (fcc)
and the hexagonal lattice structure (hcp!, hexagonally closed packed). Both crystal lattices can
be interpreted as a combination of closest packed planes. They differ in the order in which the
close-packed lattice are piled on one another. Coventionally, each plane with the same orientation
is named with the same capital letter, starting from “A”. In that notation, hcp has a ABAB...
stacking order, while fcc is arranged as ABCABC... That means, the difference between hcp and
fcc is the way the different planes are piled. While for hcp, first and third plane have the same
orientation and the second one is translated in plane, an fcc lattice consist of three differently
orientated planes [1]. The different stacking orders and the resulting unit cells of the hcp and the
bcc lattice are shown in fig. 3.1.

A third important lattice structure exist for metals: the body-centered cubic (bcc). It is not a
closest packed lattice, but its volume ratio is close to the highest possible ratio achieved by hcp
and fcc. A bcc lattice is shown in fig. 3.2, an fcc lattice is shown for comparison in fig. 3.3

Directions and planes in crystal structures are usually described using the MILLER indices. In this
notation, a lattice direction or plane is determined by three digits in the case of cubic structures
(e.g. bcc and fcc). For hcp a similar notation exist that uses four digits®. All of the following
examples are taken from [36]. The digits are written in square brackets [h k] for the direction
given by the vector n- (h, k, 1), with n being an arbitrary factor. The smallest possible integers are

used, meaning notations like [1/201] or [204] are not valid. The correct representation would

'The hexagonally closest packed structure is only a model. Real crystallites have structures with a stacking order
close to hcp. Thus, to be exact, their structure should be named “hex” instead of “hcp”.

2This is only for reasons of convenience. As in three-dimensional space only 3 parameters are independent, the
4 digits are linear depending on each other and can equally be expressed by a set of 3 digits only.
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Figure 3.2:
Bcc lattice*

Figure 3.1: Stacking order of the hcp lattice (left) and the fcc lat- Figure 3.3:
tice (right)3 Fcc lattice®

be [102]. This notation ensures that each directions is described by a unique set of integers. A
negative direction is denoted by a bar as in [110] for direction (—1,0,0). The family of crystal
directions that are equivalent to the direction [h k] is notated as (h k) (in angle brackets). A
similar scheme exists for planes. The plane orthogonal to the direction 7 - (u,v,w) is written in
normal brackets: (uvw). The notation {{mn} (in curly brackets) is used for all planes that are
equivalent to (uvw) by the symmetry of the lattice.

The structure of real crystals or crystallites is different from the idealized lattice. The defects

are characterized by their spatial dimension. The following defects exist [1, 36]:

e (O-dimensional: Vacancies, interstitials, antisite defects, substitutional defects, FRENKEL

pairs
e 1-dimensional: Dislocations

e 2-dimensional: Grain boundaries, small angle grain boundaries, anti-phase boundaries, stack-

ing faults, twins
e 3-dimensional: Precipitates, inclusions, cavities

0-dimensional defects are not directly simulated in crystal plasticity. The contribution of disloca-
tions and twinning is used as a parameter in the constitutive laws. Grain boundaries and larger
precipitates can be directly created by specifying the corresponding geometry. Because of the
special importance of dislocations and twins for the derivation of constitutive models, they are

briefly described in section 3.3.

3File taken from http://commons.wikimedia.org/wiki/File:Close_packing.svg, accessed 14" November
2010. The copyright information can be found in appendix C.

*File taken from http://en.wikipedia.org/wiki/File:Lattice_body_centered_cubic.svg, accessed 14"
November 2010. The copyright information can be found in appendix C.

SFile taken from http://en.wikipedia.org/wiki/File:Lattice_body_centered_cubic.svg, accessed 14"
November 2010. The copyright information can be found in appendix C.
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3.2 Elastic response

Elastic deformation occurs when the atoms in the regular lattice are displaced forcefully, but
without changing their neighboring atoms. The bonding between the atoms causes them to fall
back to the initial position in a stress-free configuration. Elastic deformation can be described by
HOOKE's law as a linear relation between stress and strain.

The simplest stress—strain constitutive relation is HOOKE's law. It describes the mechanical
response of a linear elastic material. HOOKE's law reads in the one-dimensional case as 0 = F - ¢
for small deformations. E is YOUNG's modulus and connects linear stress with strain. For the
three-dimensional case, the connection between the 2"4 order tensors of stress and strain is a 4t

order tensor, the stiffness tensor C. The equation reads as:

c=C:e¢ (3.1)

For an isotropic material, the tensor C depends only on YOUNG's modulus E and the PoOIssoN

ratio v.

3.3 Plastic response

While elastic deformation is the reversible part of deformation that is recovered after the force
is removed, plastic deformation remains even when the material is not under loading any more.
Metals usually have a combined elastic—plastic response. For small strains (and short loading
times), the behavior is usually purely elastic and only after reaching the yield stress (or long
holding times), the material starts to deform plastically [31].

The response of a material is not only dependent on the strain, but also on the strain rate. For
faster deformation (i.e. higher rate), the plastic deformation requires higher stress compared to
a lower rate. This time-dependent behavior is described as viscous. The viscous response of the

material must therefore also be modeled to produce applicable results [31].

(c) plastic shear

(d) combined elasto-

(b) elastic shear
only

(a) unstrained

reference plastic deformation

only

Figure 3.4: Elastic and plastic deformation

The difference between plastic and elastic deformation can be explained by the atomic structure
of the material. The atoms in crystals are arranged in a regular three-dimensional order, the crystal
lattice. Metal bonding is based on the interaction between the positively charged metal ions and

free valence electrons. If the change of position exceeds a threshold depending on the radius of
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the atom, the atoms get a new closest neighbor and the deformation is permanent. The lowest
stress required to do so is called the elastic limit. Fig. 3.4 schematically presents these different
types of deformation.

The stress state depends on the elastic deformation. Plastic deformation might relax stresses
by changing the shape of the stress-free configuration.

The shear stresses needed to deform a crystalline structure plastically are theoretically (calculated
from the atom bonding force) much higher than the measured forces. This can be explained by

the existence of dislocations and twinning. Both mechanisms are briefly outlined in the following.

3.3.1 Dislocations

Dislocations are one-dimensional (line) defects in the lattice (e.g. a line of misorder) that can move
under shear stress. Thereby atoms break their bonds and rebond with other atoms repeatedly. This
leads to a plastic deformation of the material. The energy required to break a single bond is far
less than that required to break all the bonds on an entire plane of atoms at once. Dislocations
contribute significantly to the deformation of crystalline materials, it is said that they are the
carriers of plastic deformation [29, 36].

Dislocations are described by the tangential vector to the line of the dislocation s, and the
BURGER's vector b, measuring length and direction of the dislocation. Depending on the relation
between s b, two types of dislocation exist. They are called screw dislocation and edge dislocation.
A typical representation is shown in fig. 3.5. In the following, the different types of dislocations

are briefly characterized:

e Edge dislocation: An edge dislocation is a defect whereby an additional layer of atoms is
inserted into the crystal. In an edge dislocation, the BURGER's vector is perpendicular to
the line direction. In fig. 3.5b, the extra layer of atoms is inserted at the plane (1,2,3,4).
From the fig. it can be seen that the BURGER's vector b is perpendicular to the resulting
line defect s at line (3,4). In the representation, b has the length of the extra layer.

The stress field of an edge dislocation is complex due to its asymmetry [29].

e Screw dislocation: A screw dislocation is a dislocation in which the BURGER's vector is
parallel to the line direction. It can be constructed by cutting along a plane through a
crystal and slipping one side by a lattice vector. If the cut only goes part way through
the crystal, the result is a screw dislocation. In fig. 3.5¢c, the crystal is cut at the plane
(1,2,3,4). From the fig. it can be seen that the BURGER's vector b is parallel to the
resulting line defect s at line (3,4). As in fig. 3.5b, b has the length of one atom layer.

Due to its symmetry, the stresses caused by a screw dislocation are less complex than those

of an edge dislocation [29].

o Mixed dislocation: In many materials, dislocations are found where the line direction and
BURGER's vector are neither perpendicular nor parallel and these dislocations are called

mixed dislocations, combining the characteristics of both screw and edge dislocation.

In real materials, most dislocations are of the mixed type.
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(a) undistorted lattice (b) edge dislocation (c) screw dislocation

Figure 3.5: Undistorted lattice compared to a lattice with an edge and a screw dislocation

Dislocations can move within the crystallite only in certain ways. Dislocation glide is only possible
on the so-called slip systems. Each slip system contains of a slip plane and a slip direction. A
slip plane is usually a plane with a closest package and a slip direction is a densely packed
direction within the slip plane. In the slip system, the deformation caused by a dislocation is
the smallest possible in the lattice. Thus, minimum energy is needed for the deformation. While
edge dislocations can slip only in the single plane where dislocation and BURGER's vector b are
perpendicular, screw dislocations may slip in the direction of any lattice plane containing the

dislocations line vector s.

Depending on the crystal structure, different planes are densely packed and therefore the pre-
ferred slip planes. For fcc it is usually the {110} for bcc the {112} or {112} and for hcp the
{0001}. Typical densely packed directions are (110) for fcc and (111) for bcc. For hep usually
(1120) is the preferred slip direction.

Edge dislocations—in contrast to screw dislocations—have a second way of moving, called
"dislocation climb”. This is an effect driven by the movement or diffusion of vacancies through a
crystal lattice. As a diffusion dependent effect it is temperature dependent and occurs much more
rapidly at high temperatures than low temperatures. In contrast, slip has only a small dependence

on temperature [1].

Plastic deformation starts in a slip system, where the maximum shear stress is resolved. The
shear stress depends on the tension, the angle between tension and the slip plane normal, and
the angle between tension and slip direction. The factor calculated of the cosines of the angles,

connecting shear stress and tension is known as the SCHMID factor [36].

The deformation of crystals leads to an increasing dislocation density, as new dislocations are
generated during deformation. The interaction of the dislocations hampers the further dislocation
motion. If a certain dislocation density is reached or grain rotates due to deformation, another
slip system is in a favorable state to deform. The glide system which is activated later deforms at
higher stress. This causes a hardening of the metal as with increasing deformation. This effect is
known as strain hardening or work hardening. A heat treatment (annealing) causes the defects to
heal and can therefore remove the effect of strain hardening [36].
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3.3.2 Twinning

A crystal twin consists of two crystals that are separated by a twin

boundary. A twin boundary is a special form of a grain boundary, .........:::....:.

. . . . . . 00 0000OCGOGFEOGINOS
in which some lattice planes and directions are not misordered. The ec0000000000

twin boundary can be seen as a lattice plane at which the crystals are ......................

mirrored. The crystal planes that are in plane with the twin boundary .::::::::::.

are not distorted. A twinned structure with two twin boundaries Rl
is schematically shown in fig. 3.6. The middle part of the shown Figure 3.6: Twinned crystal
structure sheared due to twinning. As can be seen from the fig., the
twin boundary is the plane at which two crystals are mirrored. Moreover, it can be seen that the
fraction of the sheared part in the crystal is a suitable measure for the deformation of the crystal
if the shear angle is known. This information can be used for the implementation of twinning into
constitutive models.

Twinning is the result of three different mechanisms. Depending on the origin mechanism, the

twins are called:
e growth twins
e annealing (or transformation) twins
e deformation (or gliding) twins

Deformation twins are of special importance as they are the result of stress on the crystal after
the crystal has formed. Deformation induced twinning allows a mode of plastic deformation in
crystalline structures. Deformation twinning occurs if one layer of crystals changes its orientation
under shear stress. Similar to the way in which dislocations move in slip systems, twinning is only
possible in twin systems where a certain shear stress is resolved.

Depending on the crystal structure, temperature and dislocation density, twinning might require
less energy than other deformation modes. Of the three crystal structures, the hcp structure is

most likely to twin. Fcc structures usually will not twin because slip is energetically more favorable.

3.4 Constitutive models

The implemented version of the spectral method is closely integrated into the existing routines
and can handle all material models available for the FEM-based solvers. The various material laws
differ in their complexity and in the effects they take into account.

In general, each constitutive model consists of three parts:
e microstructure parameterization
e structural evolution rates (hardening)
e deformation kinetics (deformation rates)

The microstructure parameterization reflects the degree of simplification, e.g. isotropic versus non-

isotropic behavior or phenomenological slip resistance versus dislocation densities. The structure
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evolution describes the change of the microstructure parameters during deformation, resulting,
for instance, in hardening. It is a function of the current microstucture and the stress state at
each point. With the microstructure parameters denoted as vector r, the structure evolution is a
function of the current microstructure parameters and the CAUCHY stress o: 7 = f(r,0). The
deformation kinetics describe the shear rate (or rates per slip system) at each point. They can
also be described as a function of r and o: 4 = f(r,o0). The composition of these three parts
results in a coupled system of ordinary differential equations (ODEs) at each point.

To determine the shear rate, the deformation gradient F' is decomposed in an elastic and a plastic
part. For small deformations, the elasto—plastic decomposition can be calculated additively [31],
while for large deformations a multiplicative decomposition is suitable [29]. For the decomposition,
a virtual intermediate (or relaxed) configuration is introduced. In this configuration, every material
point is elastically unloaded, i.e. only plastically deformed. The transformation from the reference
to the intermediate configuration is characterized by the plastic deformation gradient F',. The
subsequent transformation from the intermediate to the current configuration is characterized
by the elastic deformation gradient F',. Therefore, the overall deformation gradient relating the
reference to the current configuration reads for a large strain formulation as:

F=F,F, (3.2)

Eq. (3.2) enables the elasto—plastic decomposition of the velocity gradient. This decomposition
is additively and reads as:

L=L.+F, L, F.' (3.3)

with L, being the plastic and L the elastic velocity gradient. The plastic deformation rate
depends, typically rather strongly, on the resolved shear stress and the orientations of the slip
systems or twin systems. The elastic velocity gradient L., depends on the elastic constants of the
material and the orientation of the lattice and is usually much smaller than L,,.

The models used in the examples presented in chapter 8 are briefly explained in the following

section. A detailed description of the models and their underlying physics can be found in [28, 29].

3.4.1 J,-plasticity

The Jo-plasticity model is an isotropic constitutive law. It is based on the VON MISES yield
criterion described in chapter 2.5. Isotropy results, since the stress state is only determined by the
2" invariant .J; of the deviatoric part of the stress tensor o’ [15]. For this reason, the orientation
of the grains is not considered. The microstructure is characterized by only one state variable, the
“flow stress” r.

The deformation rate is given by:

TN

;Y = ;Yref ; Sign(T) (34)
where 7 = oy\/M is the resolved shear stress. The factor M is called the TAYLOR factor. It
is the inverse of the SCHMID factor (section 3.3.1), depends on the lattice type, and gives the

average of the resolved shear stress in all slip systems for the given VON MISES stress o). The

17



other variables in eq. (3.4) are a reference shear strain rate ¢ and a stress exponent 7.

The structure evolution reads as:

r Wref
= 14| her <1 —~ T) (3.5)

o0

with the saturation value ro, and fitting parameters wyer and her.

The plastic velocity gradient is L, determined by the following equation:

_4
M|le'||

L, (3.6)

where 4/M determines the velocity and o’/||o”’|| the tensorial direction of the deformation rate.

3.4.2 Phenomenological powerlaw

The phenomenological powerlaw extends the isotropic J>-plasticity model by considering the ori-
entation of slip systems in the crystal. Twinning is introduced as a second deformation mechanism.
The model is able to predict the response of the crystallite under consideration for various lattices
type and orientations. Depending on the lattice structure, different slip and twin systems are
available. The state variables describing the material condition are “slip resistance” r%, “twin
resistance” 7%, “cumulative shear strain” v®, and “twin volume fraction” v®. Superscripts o and
[ denote slip respectively twinning.

Shear strain rate due to slip is described in a similar way as for the J>-plasticity model given in
eq. (3.4). Instead of using the value of the VON MISES stress to calculate an average resolved
shear stress, the resolved shear stress on each slip system 7% is considered. It depends on the
stress o and the so-called SCHMID matrix. The SCHMID matrix is the product of normalized
BURGER's vector b* and the normalized normal vector n® of the slip system:

o UM (3.7)
SCREG]
The shear strain rate 4% in each slip system is given by
Lan
4 = e | 2| sien (r) (38)

Following the same phenomenology, the twin volume fraction rate is described by:

B

. 3 _ ’yref
v e

B

M (TB> (3.9)

where H is the HEAVISIDE function, 77 the resolved shear stress on each twin system, and %
the specific shear due to mechanical twinning . The value of 4* depends on the lattice type. In
fcc lattices it is rather large at v = \/2/2 while in hexagonal crystals it depends on the packing
ratio and the exact twin type [7].

The relationship between the evolution of state and kinetic variables is given by a vector equation,

comparable to the scalar eq. (3.10) of the J-plasticity model. It connects changes in slip and twin
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resistance of the various slip and twin system with the shear rates on all slip and twin systems:

~

Y
3.10
~B . P ( )

e . Mslip—slip Mslip—twin
7B

Mtwin—slip Mtwinftwin

with the four distinct interaction matrices M gjip—slip, M glip—twin: M twin—slip» and M twin—twin-
The matrices depend in detail on the number of slip or twin systems in the crystal structure and

the interactions between these systems.
For more information on the phenomenological powerlaw see [30, 37].
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4 Green’s function method

For the derivation of the spectral method for elastoviscoplastic boundary value problems, the
mathematical fundamentals, GREEN's function method and FOURIER transform are presented in
this and the following chapter. GREEN's function method is derived and explained in detail in
[8, 13].

A GREEN's function G(z,2') is any solution of the equation!

LG(z,2') = §(x — ) (4.1)

with § being the DIRAC delta function (unit impulse function) and L = L(z) a linear differential
operator [13, 21].

GREEN's function method can be used to solve inhomogeneous linear differential equations like

Lu(z) = f() (4.2)

For a translation invariant operator, i.e. when L has constant coefficients with respect to x, a
convolution operator G(x — ') can be used for G(z,2'). Multiplying eq. (4.1) with f(z’) and

integrating over x’ results in:
/LG(J: —2')f(2)da’ = /5(:E —a')f(2)da’ (4.3)

where the right side equals f(x) by virtue of the properties of the delta function. Inserting into

eq. (4.2) results in
Lu(z) = /LG(x — ') f(«')da' (4.4)

and, because of L = L(x) does not depend on 2’ and acts on both sides,

u(z) = /G(:c —2') f(a")da' (4.5)

for a translation invariant operator L(x).

The initial eq. (4.2) is solved by finding G(x — ) and carrying out the integration [13]. As
the GREEN'’s function is not known a priori, the use of this method is limited to cases where
a technique is applicable to find the corresponding GREEN's operator. The method for finding
GREEN's operator presented in this thesis uses the FOURIER transform. The FOURIER transform

and ways to compute it are presented in chapter 5.

'Example taken from http://en.wikipedia.org/wiki/Green%27s_function, accessed 14" November 2010.
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5 Fourier transform

The FOURIER transform (FT) F is an operation that transforms a function from one domain
(f(x)) into another domain (f(k)). The FT is widely used in image and digital signal processing.
It is a useful tool in solving differential equations. In the spectral method presented here, the FT

allows the equations describing the equilibrium state of the VE to be solved quickly.

When the FT is used on a function in time domain, the domain of the new function is frequency.
The FT is therefore also called the frequency domain representation of the original function. The

formula to calculate the FT in angular frequency k and frequency k = k/2m and in is given by [9]:

F(@) = f0) = [ f)eda (5.1)
Fia) = ) = [ f)eeda (52
where 72 = —1 or i = \/—1 is the imaginary unit.

The inverse transforms are performed via the following two equations [9]:

FUIE) = f@) = 5 [ Fwe wan (53)
FG0) = f@) = [ fmgei2man (54)

One advantage of the FT is the simple way of differentiating and integrating in the frequency
domain. The derivative is simply the original function multiplied by 27ix or ik:

F <Cf;f<x>) — (k) fh) = (27 R) - () (5.5)

The FT of the delta function is 1:

F((z)) = / §(z) - e*rdr =€ =1 (5.6)
The convolution theorem states that for h(z) = (f x g)(z) = T(f(a:)g(a: —y))dy the FT
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F(h(x)) = h(k) is the product of the convolved functions:

h(k) = f(k) - g(k) (5.7)

For further properties of the FT that are not needed in this work, standard literature such as
[3, 9] is available.

5.1 Discrete Fourier transform

It is also possible to apply the FT to discrete data. The discrete FOURIER transform (DFT) is a
FT on discrete input functions. It can be used as an approximation of the continuous FT if the
data is properly discretized. The DFT works only if the analyzed segment represents one period
of an infinitely extended periodic function.

For discrete data, the frequency domain is called the wavenumber domain or wavenumber space.
The DFT is shown for frequency k rather than for angular frequency k to avoid factors of 2.
Each discrete « stands for one wavenumber, where the number of waves equals the number of
points in the input data. With k = k/27 the formulas can easily rewritten for angular frequency.

To fulfill the requirement for using the DFT, the space has to be discretized. That is done by
defining discrete points in it (FOURIER points, FP) and setting out periodic boundary conditions
(BCs) to the volume element under consideration. The periodic BCs expand the space into an
infinite space, with the space under consideration being exactly one period of the longest wave
[3].

The DFT of a sequence with N complex numbers f(x,,) withn =0,..., N — 1 is the sequence

f(nj), with j =0,..., N — 1 of N wavenumbers Ky, ..., Kkny_1 according to:
N-1 .
Fleg) =" flan)- eI j=0,...,N—1 (5.8)
n=0

The wavenumbers are chosen such that [26]:

Kj=-=, j=——=,...,0,..., (5.9)

J ._ N
AN’ 2

N
2
with A being the sampling interval. Note that x; in eq. (5.8) is defined for NV 4 1 wavenumbers.
As the extreme values —N/2 and N/2 give the same result, it does not collide with the definition
given in eq. (5.8).

The inverse DFT is done by [3]:

N—

S fwp)e ¥ n=0,... ,N-1 (5.10)
=0

,_.

1
() =5

<.

It gives the values at each discrete FP that results from the operations conducted in FOURIER

space.
For an input of pure real data, i.e., Jm(f(z)) = 0, the transformed data f(x) in wavenumber
domain is the conjugated complex of f(—k): f(x ) Re(f(—k)) — Im(f(—r)). It is symmetric

24



with respect to the origin on the real part and anti-symmetric on the imaginary part. Therefore,
only half of the outputs have to be computed using a DFT algorithm. The other half can be directly
obtained from the transform data of the first half. In the same way, for the inverse transform for
a data set with f(k) = Re(f(—~r)) — Im(f(—x)) only half of it is needed to transform to a set
of real data [3, 26].

The DFT was defined for a one-dimensional sequence x,, where n counts the discrete values
of the variable . The DFT of a three-dimensional function depending on vector & with discrete
values ny =0,...,Ny —1;ny =0,...,Ny — 1;n, =0,..., N, — 1 for the components z;y; z is
a multidimensional DFT. It transforms a three-dimensional function of three discrete variables to
the FOURIER space. The result is a discrete function depending on k = (K1; k2; k3) with discrete
values j1 = 0,..., Ny — 1;52 = 0,. —1;53 =0,. — 1. The three-dimensional DFT
is—according to [22]—defined by:

J1 nx +J2 7Ly +J3 nz

PP ol -

nx=0 ny=0 n,=

Ny—1Ny—1N,—1
) (5.11)

The inverse of the multidimensional DFT is, analogous to the one-dimensional case, given by [22]:

J1 nx+J2 "y +]3 nz

flx) = Ny x Ny xNZZZ‘f el ‘

J1=0 j2=0 j3=0

Ne—1Ny—1N,-1
) (5.12)

The multidimensional DFT can be computed by composing an algorithm for a one-dimensional

DFT along each dimension. This approach is called a row-column algorithm.

5.2 Fast Fourier transform

The calculation of the DFT as introduced in eq. (5.8) needs O(N?) operations. The computing
time is increasing quadratically with the number of FPs under consideration. The fast-growing
calculation time makes the direct DFT unattractive for use on large data sets. The fast FOURIER
transform (FFT) is a group of algorithms that compute the DFT in only O(N log N) operations.
The FFT is widely used and enables the effective use of the DFT [3].

The most common type of FFT-algorithms is the COOLEY-TUKEY algorithm. It is a divide et
impera method, meaning it will divide the whole transformation into smaller parts that are simpler
(and faster) to compute. It is based on the idea of breaking down an FT with N = Nj - Ny points
into several FTs of Ny and Ny. The most common implementation is dividing IV repeatedly by
2, resulting in Ny = Ny = N/2. Therefore it has the requirement that the number of input data
(FPs) hast to be a power of two. It is called the “radix-2" variant of the algorithm. Other divisions
are also possible, mostly resulting in a loss of performance. Variants of the algorithm using different
factors are called the “mixed-radix” variants. Especially poor performance is achieved for prime
numbers [3, 16].

The speed of the calculations relies heavily on the speed of the employed FFT. Therefore it is
important to implement a FFT with good performance. While proprietary libraries available from

sources such as Intel are limited to certain processor architectures, freely-available implementations
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are usually not as fast and flexible as their commercial counterparts. Most of them are limited to
a unidimensional array with the input size being a power of two. A free DFT which has shown a
performance comparable with algorithms available under commercial licenses is the Fastest Fourier
Transform in the West (FFTW)!.

53 FFTW

The Fastest Fourier Transform in the West (FFTW) is a library for computing the DFT. It is free
software licensed under the GNU General Public License. The FFTW package is developed at
the Massachusetts Institute of Technology (MIT) by M. Frico and S. G. JOHNSON. ltisa C
subroutine library with interfaces to call it from C or Fortran codes. It can compute the DFT in
one or more dimensions. Moreover, it can handle arrays of arbitrary input size and has interface
to compute the DFT of real data. It also has multiprocessor support using the LinuxThreads?
library or Open Multi-Processing (OpenMP)3. For larger problems, an interface called p3dfft* is
available that has shown good performance on cluster computers with up to 32768 cores.

To use FFTW, it first has to be compiled with options suitable for the computer architecture
on which it should run. The resulting library files are linked to the main program to make the

routines available. Three steps are needed to compute a DFT:

1. initialize FFTW for each call and create a “plan”
2. perform the actual FFT

3. deallocate the data, destroy the plans

The initialization has to be done once for each transform. It is necessary to declare the type
of the DFT and the size of the arrays. Depending on these parameters, FFTW determines the
fastest algorithm available for the specific DFT and stores the respective plan. For the transform
of pure real data to FOURIER space the “real to complex” (r2c) interface exists. In the same way,
an inverse transform can be done by a “complex to real” (c2r) interface if the output does not
contain any imaginary part.

The FFT can then be performed for each plan repeatedly, always using the same optimized plan
by passing the variable containing the information about the plan. Depending on the type of
transform, FFTW provides different interfaces to call the FFT. Depending on the plan created,
the calls are slightly different.

When the program is finished and the transforms are no longer needed, the plan and all its
associated data should be deallocated. This is done by calling the interface provided by FFTW
for this task.

More information on FFTW can be found in [16].

Yhttp://www.fftw.org, accessed 14" November 2010.
http://pauillac.inria.fr/~xleroy/linuxthreads, accessed 14" November 2010.
*http://openmp.org/wp, accessed 14" November 2010.
*http://code.google.com/p/p3dfft, accessed 14" November 2010.

26


http://www.fftw.org
http://pauillac.inria.fr/~xleroy/linuxthreads
http://openmp.org/wp
http://code.google.com/p/p3dfft

6 Spectral methods

A spectral method is a special algorithm to solve partial differential equations (PDEs) numeri-
cally. PDEs describe physical processes in, for instance, thermodynamics, acoustics, or mechanics.
Different variants of the algorithm exist. According to [32] the variants include the GALERKIN
approach, the 7 method [24] and the pseudospectral or collocation approach. The GALERKIN
approach is also the basis for the FEM. The main difference between the FEM and the spectral
method is the way in which the solution is approximated.

The FEM takes a local approach. It takes its name from the elements on which local ansatz
functions are defined. The ansatz functions are usually polynomials of low degree (p < 3) with
compact support, meaning they are non-zero only in their domain (i.e. in one element). They
equal zero in all other elements. The approximate solution is the result of the assembly of the
single elements into a matrix. The matrix links the discrete input values with the discrete output
values on the sampling points. Thus, the FEM converts PDEs into linear equations. The resulting
matrix is sparse because only a few ansatz functions are non-zero on each point. The FEM is able
to approximate the solution of partial differential equations on arbitrarily shaped domains. In the
three-dimensional case, the elements are typically tetrahedra or hexahedra with edges of arbitrary
lengths and thus can be easily fitted to irregularly-shaped bodies.

The FEM has low accuracy (for a given number of sampling points N) because each ansatz
function is a polynomial of low degree. To achieve greater accuracy, three different modifications
can be used for the FEM [2, 4]:

e h-refinement: Subdivide each element to improve resolution over the whole domain.
e r-refinement: Subdivide only in regions where high resolution is needed.
e p-refinement: Increase the degree of the polynomials in each subdomain.

The different spectral methods can be seen as a variant where p-refinement is applied while the
number of elements is limited to one. Spectral methods use global ansatz functions ¢, (z) in the
form of polynomials or trigonometric polynomials of high degree p. In contrast to the low-order
shape functions used in the FEM, which are zero outside their respective element, ¢, (z) are
non-zero over the entire domain (except at their roots). Because of this, the spectral methods
take a global approach [4]. The high order of the ansatz functions gives high accuracy for a given
number of sampling points N. Spectral methods have an “exponential convergence”, meaning
they have the fastest convergence possible.

If the approximation of the PDEs is done by trigonometric polynomials, it can equally be ex-
pressed as a finite FOURIER series. The resulting system of ordinary differential equations (ODEs)
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can easily be solved in the FOURIER space. The outstanding performance of this approach is
gained from the fact that the transform can be done using effective FFT algorithms (chapter 5.2).
As the FOURIER series requires a periodic function (and so does the FFT), spectral methods using
FFT can only be used for the solution of infinite bodies. Usually periodic BCs are applied to the

domain of interest in order to expand it to an infinite body.

The spectral method for elastoviscoplastic boundary value problems presented here implicitly
uses FOURIER series as ansatz functions. Thus, it can only be used for cubic domains with
periodic boundary conditions, which fits well to problem of computing RVE responses. However,
simulating the behavior of engineering parts of arbitrary shape is not possible. The global approach
of spectral methods also has the disadvantage that the convergence is slow if the solution is not
smooth. This is a problem for composite materials with high phase contrasts [4, 5, 17]. Because
the presented method approximates the function exact at each sampling point (but only at the
sampling points, not in between them) it falls into the category of collocation methods [32]. Other

names for this type of spectral methods are “interpolating” or “pseudospectral” approach [4].

In the following section, the approximation of a function by a linear combination of ansatz
functions is shown. In section 6.2 the spectral method for the small strain formulation for elas-
toviscoplastic boundary value problems is derived. Its extension to a large strain formulation
that can be solved in reference configuration by using the 15t P1oLA-KIRCHHOFF stress and the

deformation gradient is outlined in section 6.3.

6.1 Basic concept

Spectral methods are used for the solution of partial differential and integral equations. This is
done by writing a function u(z) as a linear combination of global ansatz functions ¢, (x). If the

number of ansatz functions is limited to N + 1, the approximation reads as (example taken from

[4]):
N
w(@) % Y andale) (6.1
n=0

This series is then used to find an approximate solution of an equation in the form:
Lu(z) = f(x) (6.2)

where L is the operator of the differential or integral equation and wu(x) the unknown function.

Approximate and exact solution differ only by the “residual function” defined as:

N
R(z00, 01, ., ax) = L (Z an¢n<x>> ~ f(x) (6.3)
n=0

The residual function R(z;a,) is identically equal to zero for the exact solution. The different

spectral methods have different approaches to minimizing the residual [4].
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6.2 Small strain formulation

The presented small strain formulation was introduced in [19]. Variants of it are also presented
in [14, 18, 22, 23]. Different improvements where developed, starting from this basic scheme. In
[5, 17] two different formulations are shown that overcome problems associated with high phase
contrasts. One possible extension for using the scheme to solve large strain problems according
to [12] is given in section 6.3.

Starting point for the derivation presented in [19] is the relationship between stress and strain

at the point y. For small strain, it is given as:
o(y) =C(y) : e(u(y)) (6.4)
or, when using index notation and EINSTEIN convention:
oij = Cijrier, 4,5, k,0=1,2,3 (6.5)

where the CAUCHY stress o5; is a symmetric (0;; = ;) tensor of 2" order, ey is the CAUCHY-

strain tensor (small strain formulation) and Cjjy; is the symmetric fourth order stiffness tensor.

When neglecting body forces, the static equilibrium corresponds to a divergence-free stress field:
dive(y) =0 (6.6)

The spatial average over the volume under consideration (usually a RVE) of the strain is denoted
as (€) = &. Periodic BCs are applied to the VE, resulting in a periodic displacement field and a
periodic strain field. Thus, introducing € allows the decomposition of the local strain field into
its average and a periodic fluctuation €. By denoting the periodic displacement field as u*, the

decomposition reads as:
e(o(y)) =e+é(u’(y)) = +&(y) (6.7)

The average strain € depends on the current stress state and is spatially constant. The tractions
on the opposite sides of the VE with periodic BCs must be anti-periodic to fulfill the static
equilibrium.

A homogeneous reference material with stiffness tensor C is introduced to write eq. (6.4) for an
infinitely expanded and periodic strain field with eq. (6.7) as:

o(y) =C:&(y)+ C:g+ [(C(y) —@} : [E(y) + €] (6.8)

= 7(y)

The last term in eq. (6.8) is termed fluctuation field and abbreviated as 7(y). With dive =0
(eq. (6.6)) and, since it does not depend on y, div (C: &) = 0, one can write:

div (C:&(y)) = —div(7(y)) (6.9)
This equation is called a periodic LIPPMANN—SCHWINGER equation.
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For 1 = %(fbk,z + 1;,;) as in small strain theory the equation reads in index notation as:

Cijri Uk 15(y) = —7ij.;(y) (6.10)
This is a differential equation with a linear and translation invariant operator on the left side.
According to [18, 19] it can be solved with given 7;;; by means of GREEN's function method
(eq. (4.5)) for t:
(y) = / Gri(y —y') i (y') dy’ (6.11)
R3

Integration by parts leads to

ug(y) = / £] (Grily — ') 1i;(y)] dy’ — / aszki(y —y)7i;(y')dy’ (6.12)
R3 R3

Because lirin Gi = 0 the first integral vanishes. With 9/9s;Gri(y—vy') = —0/0y;Gri(y—v'),
S—L00
the derivative with respect to y of the remaining equation is:

U, (y) = /Gki,jl(y —y)7i;(y") dy'’ (6.13)
R3

To solve eq. (6.13), GREEN's function is substituted by a I'-Operator I';;1(y — y'):
~Tiju(y —y) = Griji(y — y) (6.14)

with—according to [23]—major and minor symmetries. The right hand side of eq. (6.13) is a
convolution. With eq. (6.14), it can be written as:

U (y) = En(y) = — / Cijr(y —y') 7 (y")dy = — ([ * 1) (y) (6.15)
R3

As in the convolution each variable interacts with each other variable, the convolution operation
can be seen as a stiffness matrix in FEM in which only single components equal zero. The effective
calculation of the convolution leads to the fast convergence of the spectral method. According
to eq. (5.7), a convolution in real space corresponds to a plain multiplication in FOURIER space.

FT applied to the equation, therefore, leads to:

En(k) = —Tiju(k) 75 (k) (6.16)

with the caret denoting quantities in FOURIER space. The angular frequencies k correspond

to y in real space.

To solve the problem iteratively, the given average strain €y is applied on the VE and we must

assume éﬂzo(y) =0, ie o™ (y) = C'ijkiEr for the first iteration. The superscript (m) denotes

ij
the current iteration step. Solve eq. (6.16) to get a new value for ég‘ﬂ(y), assuming:

EMt(k) = —Tyju(k) 7 (k) (6.17)
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To solve the equation, fijkl must be known. According to [23], GREEN's function is the solution

of the following differential equation:
Cijit Grmj(y —y') +imd(y —y') =0 (6.18)

with the KRONECKER delta d;,, and the unit impulse function §(y —y’). Using FT on eq. (6.18)
with eq. (5.5) and eq. (5.6) leads to:

Cijnt 1 kikj G () + Gi = 0 (6.19)
Using the substitution rule of the KRONECKER delta and with i2 = —1, eq. (6.19) reads as:
A — 1-1
Gri(k) = [kik; Cijii) (6.20)

K (k) = kik; éijkl are the components of the acoustic tensor K of the reference material. The
-1

Vk #0.
Applying FOURIER transforms on eq. (6.14) results in:

inverse is defined as N;j, := [fzk]

Lijra(k) = kik; G (k) (6.21)

which allows to solve for I';;1; (k) in FOURIER space:

Vijii(k) = kjky Nig(K)|ijery Yk # 0 (6.22)
where \(ijkl) denotes symmetrization with respect to all indices, resulting in major an minor sym-
metries for f,jkl(k:) The knowledge of I';j5;(k) enables the solution of eq. (6.17) for the strain.
Due to the singularity of I';;x;(k), a solution for k = 0 is not given. But as k = 0 has an infinite

wavelength, &(0) is a priori known as the average strain: £(0) = €.

A new value for the stress is achieved by:
o (y) = Cijm(y) (@j + 5?}“) (6.23)

where é;?“(y) =F! (ei’?“(k)) Using eq. (6.17) and eq. (6.23) as a fix-point algorithm allows
the solution of initial eq. (6.4).

The iterations are stopped if equilibrium is reached. This is done by calculating the divergence
of the stress field in FOURIER space. The convergence criterion proposed in [14, 19] reads as:

S Qo) (624)

which is the average of the divergence in FOURIER space normalized by the value of the average

stress (at wavenumber zero). Usually ag, = 1074

The properties of I are well known and described for example in [17]. With:
F«(C:e)=¢ (6.25)
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follows:
e (y) =" (y) — T(y) o™ (y) (6.26)

For an equilibrated stress field o no correction of the strain field is needed:

IFxo=20 (6.27)

The simplified problem can be summarized as:

e (y) =em(y) — F ' ([ (k) : F(o™())) (6.28)

/

= Ae™(k) = Ae™(k)

The corresponding algorithm is especially efficient as there is no need to build the (intermediate)
fluctuation field 7(y). Furthermore, the equilibrium check (eq. (6.24)) can be performed at no
additional cost, since the FOURIER transform of the stress field is required in eq. (6.28).

The presented scheme uses the small strain approximation and is therefore not suitable for
the more general case of large strains involving a rotational part. A formulation valid in these

circumstances is presented in the following section.

6.3 Large strain formulation

In [12], two possible methods are presented to extend the small strain formulation to problems
with large deformations. In this thesis, the implementation of the variant using the LAGRANGian
description is outlined. Instead of using the CAUCHY stress and strain, it is written in terms of the
1%t P1oLA-KIRCHHOFF stress P(x) and the deformation gradient F'(x). As those two quantities
are 2-point tensors, it allows the problem to be solved in the reference configuration only. A shape
update of the FP grid is not needed, as F'(x) performs the push forward from the reference to
the current configuration (chapter 2). The deformation gradient F'(x) is incrementally calculated
from the former one. The deformed configuration is not needed for the solution by means of the
spectral method. For postprocessing the current configuration can be computed from the local

deformation gradient at each point.

For an arbitrary constitutive law, the stress at each point is a function of the deformation

gradient (or equivalently of the displacement gradient):

P(x) = f (F(x)) (6.29)
P(x) = f(Ho(x)) (6.30)

with equilibrium condition in reference configuration
div(P(x)) =0 (6.31)

Eq. (6.29) has a similar form as eq. (6.4). Thus, the problem can be solved in a similar way,
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resulting in:
FoHl(g) = Fo(z) — F (fr : ]—"(Pm(m))> (6.32)
with

Cijri(k) = Na(k)kikil ry ) (6.33)

where |(;)(j;) denotes symmetrization with respect to 7, k and j, 1 only. Thus, in contrast to I';jx
for the small strain formulation, the I'-operator for the large strain formulation has only the minor
symmetries.

A slightly different method is used to check for equilibrium for the large strain formulation. It
gives comparable results to the criterion used for the small strain formulation, but is easier to

calculate:

maxg

k-P"(k
‘ | m ( )‘ Satol- (634)

P"(0)|

Usually where a¢o; = 1072

6.3.1 Numerical aspects

The formulations for small and large strain presented here are solely analytical. As described earlier
in this chapter, spectral methods approximate the solution by a sum of ansatz functions. There is
no need to express the stress or strain field by ansatz functions in real space. A discretization can
implicitly done by using the DFT to approximate the FT, thus approximate the infinite FOURIER
series by finite ones. The chosen number of FPs determines the order of the FOURIER series, i.e.

the accuracy.
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7 Implementation

At the Max-Planck-Institut fiir Eisenforschung GmbH (MPIE), crystal plasticity finite element
methods (CPFEM) are used to simulate the mechanical response of crystalline materials [29]. A
RVE is used to predict the material answer to certain load cases. Its size depends on the phase

contrasts and the orientation of the single grains under consideration [10].

At the MPIE, several routines have been developed for the calculation of crystal plasticity
phenomena. The routines provide facilities to use several constitutive laws on the grain level—
from simple phenomenological to physics-based models. The routines are included in a flexible

framework with interfaces to commercial FEM solvers like MSC.Marc! or Abaqus?.

In this chapter, it is shown how a spectral method using FFT is closely connected to the existing
material routines. The spectral method is used as an alternative to FEM-based solvers. The
extension to use the spectral method consists of routines to define the question to be solved, a
method to calculate the deformation state fulfilling the given stress BCs, and the implementation
of an FFT code. The use of the existing material routines is also clarified in this chapter. The
resulting algorithm in short form is given at the end of the chapter. Application examples of the

implemented solver are shown in chapter 8.

The CPFEM code and its extension using a spectral method is written in Fortran. Fortran
as the first developed high-level programming language was introduced in 1954. Its name is an
abbreviation of formula translator. Although it is a general-purpose language, it is especially suited
(and widely used) in the field of high-performance scientific computing. Fortran was successively
enhanced, resulting in a number of versions. The new versions largely retain compatibility with
previous versions. The newer versions are named after the year in which they were introduced
[27]. The latest version is Fortran 2003, which is an extension of the widely-used Fortran 90/95.
The version used for this implementation is Fortran 90/95.

The solver using a spectral method is wrapped around the material routines in a similar way to
the FEM solvers. To use the interfaces developed for the FEM solvers, the functionality of the
FEM tools has to be emulated. Each step from setting up the problem to the postprocessing has
to be implemented to get a stand-alone executable. The information how to compile the source
code and link the files in order to obtain an executable file is stored in a “makefile”. The makefile

is given in listing A.4.

'http://www.nscsoftware.com/, accessed 14™ November 2010.
2http://www.simulia.com/products/abaqus_fea.html, accessed 14" November 2010.
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7.1 Problem set-up
The problem to be solved is specified by three files:

1. the geometry specification file *. geom,
2. the material configuration file material.config,

3. the load case file *.1load.

The use and the structure of the files is described in the following subsections. Example files
are given in appendix B. The files are designed for the routines developed at the MPIE. They are
modeled for easy readability for humans, rather than being optimized to give small file sizes. All

files can be easily edited by standard text editors.

7.1.1 Geometry specification

To apply the spectral method to elastoviscoplastic boundary value problems, the volume under
examination has to be discretized by a point grid. A VE consisting of 200 grains and discretized
by 64 FOURIER points (FPs) in each direction is shown in fig. 7.1. Due to the simple geometry
of the VE (hexahedra) with a regular FFT grid, no complex meshing as for the FEM has to be
carried out. The information about the material at each FP and the discretization of the VE is
stored in the geometry file (file extension .geom). An example geometry file consisting of five
grains that is discretized by three FPs in each direction is shown in listing B.1. The geometry file
is subdivided into a header and a main part.

In the header, the dimension of the geometry and its discretization is specified. The size of
the cuboid VE is described by its three space dimensions. The keyword is dimension, followed
by three pairs of letters and floating point numbers. Each of the letters %, y, and z stands for
one dimension and is followed by the corresponding value. In a similar way, the number of FPs
is specified. The keyword is resolution followed by a, b, and ¢ and the number of FPs in
each direction as an integer value. A "homogenization scheme” can also be used. This is done by
using the keyword homogenization followed by a number referencing to a certain homogenization
scheme®. The order of the keywords is arbitrary as long as they are at the beginning of the file.

The header is followed by the actual information about the geometry. Each row contains the
information for one FP. Counting starts at one and goes up to the total number of FPs. The
points are arranged in a linear list with the component x of the position vector (x;y; z) changing
fastest and z changing slowest. The single integer in each line stands for the material that is used
at the specified position (referencing a particular microstructure defined in the material.config
file).

To use the existing routines developed for the FEM-based solvers, a structure comparable to the
one used by the FEM has to be emulated. Therefore, a linear element with reduced integration
capacity (called C3D8R by Abaqus) is pretended. The element is displayed in fig. 7.2. This

3Homogenization techniques allows it to determine the average response of a cluster of grains. Homogenization
is used in two-level approaches for the calculation of engineering parts. More information on homogenization
techniques can be found in [29].
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element is a hexahedra, its shape is specified by the position of the nodes on its eight corners.
For FEM solving, it has one integration point (or GAUSS point) in the center of the element. For
the spectral method, this point is the FP. Each face (roman numerals) and each node (arabic
numerals) of the element has a unique number as shown in fig. 7.2. The counting scheme on the
element is basically arbitrary, for compatibility reasons it follows the convention that is used in the
standard FEM codes.

Figure 7.1: Volume element consisting Figure 7.2: Hexahedral finite element
of 200 grains discretized by 643 FPs with one integration point

Each point in a VE as shown in fig. 7.1 corresponds to one FP shown in fig. 7.2. The VE is built
by generating a numbering scheme for a global grid of nodes and FPs in the VE and connecting
the local numbering of each element with that global scheme. The complete VE consists of
Npp = Ny x Ny x N, FPs and (Nx + 1) x (Ny + 1) x (N, + 1) nodes, where Ny , are the
number of FPs as defined in the geometry file along each of the three dimensions.

An intermediate position for each FP and
each node is calculated first for a hypothetic
VE with the side lengths equal the number of
FPs in the corresponding direction. Counting
starts at one and goes op to the number of
FPs for each component of the intermediate
position vector. The positions are equispaced

in each direction. By convention the posi-

tion for the first dimension runs the fastest.
Therefore the FPs with numbers from 1 to Ny

are at intermediate positions d(1,...,Ny) =
(1,...,Ng;1;1). Element No. Ny + 1 is lo-
cated at d(Nx +1) = (1;2;1) and so on. The Figure 7.3: Assembly of the VE

corresponding scheme for numbering the nodes
works the same way, where Ny y , is replaced by Ny, , + 1 as there is one node more than FPs in

each dimension.
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The physical coordinates of nodes and FPs can be calculated from the intermediate position
vector and the length specified for the three dimensions. The calculation is explained for the one-
dimensional case in the following. The length of the side in the example is denoted as lx and the
number of FPs in that direction equals Ny. The first node is located at (di(1) —1)/Nx x Ix =0,
the second at (d;(2) —1)/Nx x I and so on. The last node (Nx + 1) is located at Iy and—due to
the periodic BCs—falls together with the first node. The FPs are located in the middle of their
element, therefore the first FP is positioned exactly between the first two nodes, thus at position
(d1(1)—1/2)/Nx xIx. The second FP is in between node two and three and so on. The extension
to the three-dimensional case is straightforward.

As each element has exactly one FP, each element gets the same global number as the associated
FP. All elements have eight nodes that surround the FP. Due to the periodic BCs, each node is
always shared by eight elements. The assembly of the VE is schematically shown in fig. 7.3, where
three elements and their numbers are given exemplary.

The implemented numbering routine is able to handle arbitrarily shaped elements with various
numbers of integration points (used only by FEM-based solvers). It connects each element with
its neighboring elements by providing information as to which nodes and faces are shared by which
elements. The result is a “virtual mesh” that allows the results achieved by the spectral method
to be presented in a compatible way to interfaces developed for the FEM solvers. The routines
for building the virtual mesh are given in listing A.3. The functions named *spectral* were
implemented especially for the spectral method. All other functions in the source code file are
generic. They are also used for the FEM-based solvers. The functions used solely for MSC.Marc
or Abaqus are removed from the appended file in order to reduce the length of the appendix.

7.1.2 Material specification

The specification of the material behavior relies on an existing framework developed at the MPIE.
Details on the CPFEM implementation can be found in [28]. The framework uses a very flexible
material representation that allows the description of single crystals as well as multiphase materials.
To achieve this, all material information is stored in a configuration file named material.config,
which is read during the initialization of the material subroutine. An simple example file describing
two grains is shown in listing 7.1.

The file is divided into several parts. Each part starts with a label of the form <keyword>, where
valid keywords are: homogenization, microstructure, crystallite, phase, and texture.
The parts can hold multiple sections, of which each starts with a label of the form [entryname].
entryname is an arbitrary string. In the model, a material is assigned to an FP by specifying its
homogenization and microstructure. For this purpose, the sections are consecutively numbered so
that they can be indexed by their position within the part. In this way it is possible to use different
materials, even different constitutive laws, within one model. In the following, the keywords are

briefly described:

e <homogenization> The homogenization scheme for the whole VE. Since RVEs do typi-
cally not contain more than one phase per material point, a homogenization scheme is not

required. Therefore, a homogenization scheme where the keyword Ngrains is set to 1 and

38



type equals isostrain should be used.

e <microstructure> Each microstructure specified in this part corresponds to one or more
grains in the VE. Each microstructure consists of one ore more constituents (specified by
(constituents)). The constituents are characterized by their phase, their texture, and
their fraction on the microstructure. The keyword crystallite is used to specify the
desired output variables. The keywords crystallite, phase, and texture refer to the

respective keywords in angle brackets given below.

e <crystallite> This part is used to specify which information of each FP should be

recorded. Each output option is specified after a keyword (output).

e <phase> After this keyword the information about the mechanical behavior of each phase is
given. The most important entry for each phase is the key constitution. Its value defines
which constitutive model is used for this phase with remaining entries in the section giving
the necessary parameters and output options connected to the constitutive law. Possible
keywords are: j2, phenopowerlaw (the constitutive models used for the examples presented

in chapter 3.4), nonlocal, and dislotwin.

e <texture> The orientation (distribution) of the constituent.

Listing 7.1: Example material configuration file
<homogenization>
[SX]

type
Ngrains 1

# homogenization scheme 1
isostrain

<microstructure>

[Grain001] # microstructure 1
crystallite 1

(constituent) phase 1 texture 1 fraction 1.0

[Grain002] # microstructure 2
crystallite 1

(constituent) phase 1 texture 1 fraction 1.0

<crystallite >

[all] # crystallite 1
(output) orientation

(output) p # 1st Piola—Kichhoff stress tensor
<phase>

[Aluminum_phenopowerlaw] # phase 1

constitution

phenopowerlaw

(output) shearrate_slip
lattice_structure fcc

cll 170.17e3

cl2 114.92e3

c44 60.98e3
gdotO_slip 1.0

<texture>
[Grain001]
(gauss)

phil 359.121452

Phi 82.319471

Phi2 347.729535
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In the example given in listing 7.1, one homogenization scheme named [SX] of the type
isostrain is defined. Thus, in the geometry file *.geom the keyword homogenization should
be set to 1, referring to the only available scheme. Two microstructures, named [Grain001]
and [Grain002], are specified. Since the parameters for both microstructures are identical, refer-
ring to the only available sections in the various parts, both microstructures are identical in their

mechanical behavior.

In listing B.3 the material specification used for the simulations discussed in chapter 8 is given.
For reasons of convenience, only five of the hundred differently oriented grains are defined in the

given example.

7.1.3 Load case specification

The load case file (extension .load) holds information about stress and strain applied to the
VE. Each line defines the BCs to be applied for a particular period of time. A sequence of loads
can thus be specified by additional lines, allowing cyclic loading to be applied, for example. Per
line, the nine components of the velocity gradient (keyword 1 or velocitygrad) and the stress
(keyword s or stress), the period of time (keyword t, time or delta), and the number of time-
discretizaion steps (keyword n, incs, increments or steps) are given. Since components for
stress and velocity gradient are mutually exclusive, a # should be used for the stress component

where the velocity gradient is given and vice versa.

An example file prescribing the four load cases used for the simulations discussed in chapter 8

is given in listing B.3.

7.2 |Initialization

The routine starts with reading in the information from the files specifying the problem under
consideration. The two arguments passed to the compiled executable are the geometry file and
the load case file. The location of the load case file determines the working directory where the
material configuration filematerial.config is searched for. There is the possibility of giving more
parameters regarding numerics and debugging by putting the optional files numerics.config and
debug.config into that directory. The parameters control the behavior of the different routines
of the subroutines developed at the MPIE. If one of the three mandatory files is not available, the

program will exit and report an error.

7.2.1 Load case

The information about the load case (*.1load) is read in first. A sanity check is done to find out
whether all load cases are completely defined, meaning they all have velocity gradient respectively
stress BCs, loading period and steps defined. The program will exit with an error message if one

component of the stress BC and the velocity gradient is doubly or not at all defined.
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7.2.2 Geometry

For the undeformed reference configuration, the deformation is set to identity. To initialize the
material point model the interface routine CPFEM_general is called. This then reads in the
geometry file, generates the connections between the elements, sets up the constitutive laws, and

returns the elastic stiffness for each material point.

7.2.3 FFTW

The FFT used in the presented implementation is FFTW in version 3.2.2. As described in
chapter 5.3, it has to be initialized by creating a plan. This is done during the initialization
by calling the function provided by FFTW as soon as the information about the FP grid is
available. Each component of the 15* P1oLA-KIRCHHOFF stress must be transformed to the
discrete FOURIER space (wavenumber space). The result of the operations in wavenumber space
must be inversely transformed to give the change in the deformation gradient.

The quantities used in FOURIER space, the I'-operator, the stress field, and the change of the
deformation gradient at each point, are quantities originated in real space and without an imaginary
part. As described in chapter 5, this allows the use of the efficient “real to complex” (r2c) and
“complex to real” (c2r) interfaces of FFTW for the transformation from real to wavenumber space
and inverse [19]. By using these interfaces, only Ny/2 + 1 instead of Ny values for the first (or
any other) dimension are transformed [26].

Like most of the FFTs, FFTW stores the information in wrap-around order. In first position,
the value of wavenumber (angular frequency) k = 0 is stored. It is followed by the value of the
smallest positive wavenumber, the value of the second smallest one etc., up to the value of the
most positive wavenumber (which is ambiguous with the value of the most negative wavenumber).
Values of negative wavenumbers follow, from the value of the second-most negative wavenumber

up to the value of the wavenumber just below zero.

7.2.4 Wavenumbers and ['-operator

The wavenumbers are equally distributed and depend on the size of the VE and its discretization.
Each component k; of the wave vector k is a linear sequence from —N;/2 to N;/2 divided by
the size of the VE in direction [; [19, 26]. They must be arranged in wrap-around order since the
transformed data is stored as described in section 7.2.3. The wavenumbers are used to calculate
the I'-operator according to eq. (6.33) and to determine equilibrium in FOURIER space as given
in eq. (6.34).

The I'-operator is directly calculated for each wavenumber as a product of reference stiffness and
wavenumber as described in chapter 6.3. In the implementation presented here, the I'-Operator
is calculated only for Ny /2 4 1 wavenumbers in the first dimension, using the symmetry resulting
of the transformation of real-only data to FOURIER space* [19]. In combination with the r2c and
c2r FFT this saves half of the computation time and almost half of the memory needed to store
the I'-operator and the stress field in FOURIER space.

“The TI'-operator is easier to compute in FOURIER space as shown in chapter 6.2. Nevertheless it is a quantity
originated in real space.
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The reference stiffness (average stiffness) for the VE is computed by summing up the stiffness

tensor from each FP and dividing it by the total number of FPs:

Kdo (F(n) 1 $RdAP(F(n) e
de(n)  ~ Nep aF(n) C, forF(n)=F=1 (7.1)

1
Nrp

n=1 n=1

7.3 Execution loop

By the end of the initialization, the basic information about load cases and geometry is written to
the results file (section 7.4). An outer loop over all load cases is performed. Inside the load case
loop, an inner loop over the steps of the current load case is carried out. Two conditions have to
be fulfilled by the end of each step: the stress BCs and the mechanical equilibrium. The average
stress state is determined by the prescribed average deformation gradient F'. The components of
F that are not directly given by the prescribed velocity gradient, i.e. the components where a stress
BC is given, have to be adjusted in order to fulfill the applied stress BCs. Mechanical equilibrium
depends on the deformation gradient on each point F'(x). For each step, the calculations are
done iteratively until the stress BCs are fulfilled and the mechanical equilibrium is reached within

the given tolerance.

7.3.1 Global deformation gradient

The global deformation gradient F', i.e. the average over the whole VE, is directly calculated from
the prescribed velocity gradient and the time stepping given in the load case file. Components
where a stress BC applies (no velocity gradient given) are skipped at first. These components of
F have to be adjusted in order to fulfill the applied stress BCs, as the values of F' leading to a
state fulfilling these BCs is a priori unknown.

The stress on each point is computed by calling CPFEM_general. The input arguments for
the call are the deformation gradient at the end of the former step F%(x) = '+ Fo(cc), the
newly predicted deformation gradient F'™(x) of the current iteration m, the duration of the
deformation, the element number, the integration point (for the spectral method the FP), and
the temperature. CPFEM_general returns P, o, dP/dF and do/dE; at each point. Only the
15t P1oLA-KIRCHHOFF stress tensor P™(x) is used for now to calculate the average stress P
on the VE. With the deviation between P and given BC denoted as AP, evaluating

AF" =5 AP (7.2)
for the components where a stress BC is located gives the correction of the deformation gradient.
The tensor S is the inverted stiffness C calculated during initialization.

The value for the correction of F calculated by eq. (7.2) tends to be too strong. For example, if
uniaxial stress is applied, the first guess for the deformation gradient would be strain in the desired
direction while the other directions are unstrained. This results in a volume expansion that leads

to high stresses. The problem is therefore solved iteratively with the value of AF damped by a
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factor p:

F" =F" 4 pAF""! (7.3)
A simple damping scheme is applied. The algorithm starts with a high damping factor, e.g.
p = 0.05, i.e. the value of F is only corrected by 5% of the value calculated by eq. (7.2). If
the correction of on component ij is too strong, the algorithmic sign of AFZ}LH differs from
the one of AFZL In this case, a weaker correction is applied on the component for the next
step m + 2 to prevent oscillations around the correct solution. Similarly, the correction values for
m + 2 is increased if the previous correction step is to small. While being far from perfect, this
simple algorithm significantly improves the speed of calculation. A more advanced and possibly
more efficient scheme is not introduced so far. However, the described rather time consuming
Z:l
from the former steps. On each following step of the load case a continuation along the trajectory

calculation is only needed for the first step of each load case, when the F' cannot be predicted
of the two former steps is predicted for the components of the deformation gradient where stress
BCs are applied. This assumption is correct for the linear elastic deformation and almost correct
for plastic deformation as long as the change in slope is not too strong. It significantly improves

the performance of the computation of the global deformation gradient.

Each local deformation gradient is corrected by the change of the average deformation gradient:

m+1 ——=m

FH(z) = F™(2) + (F ™ (7.4)

and a new stress field is computed by calling CPFEM_general.

The stress BCs are regarded as fulfilled if the largest deviation is less than 0.8% of the highest
stress component. This relative tolerance considers that at low stress states more accuracy is
needed than at high stress states. The criterion exceeds the desired accuracy by the end of each
step as the calculation of the local deformation gradient is likely to amplify the error.

When a deformation state fulfilling the stress BCs is finally known, the local deformation gradient

is calculated by means of the spectral method in order to achieve the mechanical equilibrium.

7.3.2 Local deformation gradient

At the first step of each load case a homogeneous deformation (i.e., vanishing fluctuation) is
assumed on each FP for the first iteration. That means that the global deformation gradient
is applied at each FP: Fl(z) = F'. From the second to the last step of each load case, the
predicted deformation gradient for the first iteration F'l(x) = F 4 Fl(a:) is the continuation at
the rate of the former step.

The calculation starts with a call to CPFEM_general to get the 15* PIoLA-KIRCHHOFF stress
tensor P™ (x) on each point resulting from the current deformation gradient F"*(x). The stress
field is transformed to FOURIER space and multiplied by the I'-operator. The convergence is
checked in FOURIER space according to eq. (6.34). As described in chapter 6.3, the inverse
transform of [(k) : P" (k) results in the change of the deformation gradient Al:"m+1(a:) =
AF™"(z) that leads to mechanical equilibrium. The new average deformation gradient does not

necessarily fulfill the applied BCs. The average part Fm+1(w) on each FP is therefore corrected in
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a way similar to the one applied in the calculation described in section 7.3.1 during each iteration.
With the new deformation gradient F™!(z), a new stress P™"!(x) is computed. The loop is
performed until convergence is reached within the limits given as tolerance.

The calculation ensures that F equals the value predicted in the calculation described in sec-
tion 7.3.1. However, as the local fluctuations change the stress state, it does not necessarily lead
to a state where the stress BCs are fulfilled. The average stress P is therefore calculated during
each iteration and compared to the applied stress BCs. The BCs are regarded as fulfilled if the
largest deviation is less than 1.0% of the amount of largest stress component. This tolerance
for the stress BCs is less accurate than the one of the scheme outlined in section 7.3.1. If the
stress does not fit to the applied BCs, again a correction of F is accomplished as described in
section 7.3.1.

The different tolerances lead to a situation, where the calculation loops for global and local
deformation gradient are usually employed only once. A switch back from the scheme for the local
deformation gradient to the scheme for the global one is rarely needed, mostly for the first step
of a load case with high applied deformations.

As soon as the equilibrium state is reached while the stress BCs are fulfilled, the results are
written to the output file and the algorithm moves to the next step of the load case (or to the

next load case if the calculated step was the last step of the current load case).

7.4 Output

The results obtained by the material subroutine are stored in the output file results.out in
binary format. The results that can be written out depend on the constitutive model used. They
can be specified in the file material.config. The current configuration of the VE has to be
constructed from the deformation gradient on all FPs F'(x). Thus, F'(x) should be always chosen

as an output option. The information can be converted to a file that can be viewed in gmsh®.

7.5 Resulting algorithm

The resulting algorithm is implemented in Fortran 90/95. The compiled executable file is called

mpie_spectral. lts source code is divided into two files:

e mpie_spectral.f90

e mpie_spectral_interface.f90

The two files are given in appendix A. The first file contains the information outlined in this
chapter. It is schematically given as pseudocode in listing 7.2. The second file provides the
information for CPFEM_general how to read in the geometry from the geometry file *.geom.

Besides these two source code files, different files containing the source code for the material
models, standard mathematical tasks, etc. must be compiled and linked. Since most of these

files are not altered for the implementation of the spectral method, they are not included in the

*http://geuz.org/gmsh/, accessed 14™ November 2010.
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appendix. Only the code file for the geometry generation (mesh.f90) was heavily modified and
parts of it are given in listing A.3. Only the generic routines (for both, FEM- and spectral method-
based solvers) and the routines especially written for the presented implementation are included
in appendix A. The routines for MSC.Marc and Abaqus as well as the definitions for all elements
except from C3D8R are removed from the file. To use FFTW with multiprocessor support, three
files must be added. The compiled library files 1ibfftw3.a and 1ibfftw3_threads.a are linked
to the compiled routines and the file storing the variable definitions, fftw3.f, is included in the
source code.

The makefile storing the information how to compile and link all necessary files using the Intel

Fortran compiler® is given in listing A.4.

®http://software.intel.com/en-us/articles/intel-composer-xe/, accessed 14" November 2010.
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Listing 7.2: Summarized algorithm

Data: geometry, material, load_cases
Result: S, k, [AF, n_load_cases
for j <+ 1 to n_load_cases do // looping over load cases

n_steps < Func(load_cases(j)) // with ’Func’ denoting a generic function

for i < 1 to n_steps do // looping over steps of current load case
if i =1 then // homogeneous guess for first step
F' Func(load_cases(j))
Fl(z)« F
else // continue along former trajectory

Fe@F '-F

| Fl(z) « (2. F7l(x) - F'%(x))

calcmode + 1

m <+ 0

while error_stress > tol or error_divergence > tol do // convergence loop
switch calcmode do

case I // global deformation gradient (fulfill stress BCs)

m<+—m-+1 // increase number of iterations
P™(x) + Func(F™ !(x)) // constitutive law
P« |P"(a)|

" %Func(ﬁm,g) // correct average deformation gradient
error_divergence < (2 - tol) // equilibrium never fulfilled
error_stress < Func(P', load_cases(j)) // compare to BCs

if error_stress < tol then calcmode + 2

case 2 // local deformation gradient (fulfill equilibrium)

m<+—m-+1 // increase number of iterations
P™(x) + Func(F™ !(x)) // constitutive law
P" (k) « FFT(P™(x)) // FT of stress field
AF" (k) « [ (k): P" (k)
F™(x) < F™ Yx) + FFT"Y(AF™(k)) // inverse FT
P" — |P"(x)|
error_stress < Func(P', load_cases(j))
error_divergence < Func(P"(k), k) // in Fourier space
if error_stress > tol then calcmode + 1

Result: P(x), Fi(x) // store results of converged step
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8 Simulation results

In order to test the implemented algorithm, several simulations are performed.Three test and
the results achieved are presented in this chapter. The first simulations presented in section 8.1
are used to prove that the implementation works in general. The test conducted to see if large
deformations are handled correctly is shown in section 8.2. The comparison between the solution
achieved by the spectral method and the “de facto standard” FEM is outlined in section 8.3.

8.1 Proof of correct implementation

As a first step to validate the implementation, some results are compared to simulations carried
out with an implementation of the spectral method written by R. LEBENSOHN. This imple-
mentation is called evpbj. It uses a small strain formulation and a viscoelastic constitutive law
without hardening. A comparable constitutive model available in the routines of the MPIE is the
phenomenological powerlaw (chapter 3.4.2) with the hardening set to zero. The elastic constants
used are chosen in allusion to the values known for copper. The VE is a polycrystal consisting of
100 randomly orientated grains. It is discretized by 32 FPs in each direction.

A velocity gradient with component L33 = 1s™! is prescribed. The global shear deformations
are set to zero. The stress of the two remaining directions is set to zero (stress BCs). Thus, the
prescribed load case results in a uniaxial stress state. The deformation is applied in 40 steps, each
with a duration of 0.0001 s, resulting in a final strain of €33 = 0.0004. The load case is given in
the first line of listing B.2.

Three different versions, called mpie_spectral v. 0.1, v. 0.2, and v. 0.3 are used for comparison.
Version 0.1 of mpie_spectral differs only slightly from evpbj if a similar material model is used.
The most serious differences are the prediction of the fluctuations and the calculation of the error.
While in evp5j a completely homogeneous strain field e'(y) = € is the prediction at the first
iteration of each step, in mpie_spectral v. 0.1 the fluctuations of the last step are stored and only
the additionally prescribed deformation is homogeneous: €'(y) = €°(y) + € — €°. Superscript 0
denotes the deformation at the end of the last step, i.e. no deformation at the first step. The
abort criterion implemented in evp5j depends on the relative change of the deformation compared
to the last iteration. The criterion implemented in mpie_spectral v. 0.1 is based on the divergence
of the fluctuation field that is calculated in FOURIER space. The field is said to be divergence
free, thus in the mechanical equilibrium, if

max F- PR 107 (8.1)
|P(0)]
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This criterion is more accurate than the value of ay, = 10~ proposed in chapter 6.

Version 0.1 of mpie_spectral is not optimized. It uses complex-to-complex (c2c) FFTs for the
FT and the inverse FT and makes no educated guess at the displacement. Versions 0.2 and 0.3
are optimized regarding theses points. The difference between versions 0.2 and 0.3 is the handling
of the deformation gradient. As in evpbj, in version 0.2 the deformation gradient is symmetrized.
Thus, the strain measure is the CAUCHY strain that is valid only for the small strain formulation.
Version 0.3 of mpie_spectral does not symmetrize the deformation gradient. It is the final version,
fully written in terms of the large strain framework introduced in chapter 2.

In tab. 8.1 the properties of the different versions of mpie_spectral are compared to evp5j. The

iterations needed to converge for some steps of the applied load case are also given in this table.

Table 8.1: Properties of the different versions of mpie_spectral compared to evp5j

implementation evphj mpie_spectral

version n/a 0.1 0.2 0.3
type of the FFT c2¢c, c2c r2c, c2r

mech. framework small strain large strain

deformation symmetric non-symmetric
predicted deformation fully homog. new homog. step continuation at last rate
o Step lL: 14 32 23 23

g’ step 2: 16 21 2 2

2 step 3 16 24 2 2

S step 4 17 18 2 2

8 step 5 17 17 2 2

T step 10: 17 13 2 2

T step 15: 20 12 4 4

2 step 20: 20 13 5 5

2 step 25: 21 16 4 4

-E step 30: 21 16 3 3

S step 35: 21 17 3 3

£ step 40: 21 17 2 2

It can be seen from tab. 8.1 that for the first step, more than twice the number of iterations are
needed by mpie_spectral v. 0.1 when compared to evpbj. This is a result of the different abort
criteria. By using the less strict criterion a, = 10™* for mpie_spectral, fewer iterations compared
to evphj are needed, but the results differ significantly. For the following steps, fewer iterations
are needed due to the better guess at the beginning of each step (homogeneous add-on instead
of fully homogeneous deformation).

At the first step, the prediction is the same for all implementations. That fewer guesses are
needed in version 0.2 and 0.3 compared to v. 0.1 can be explained by the use of the r2c/c2r
interfaces. As the r2c/c2r FFT takes the not existing imaginary part of the quantities in real
space into account, the numerical distortion is much lower. This results in a faster convergence.

Even with the homogeneous add-on, a faster convergence is reached compared to the reference

implementation. With the prediction of the former rate as a guess (mpie_spectral v. 0.2 and v.
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0.3) for the new step the performance is even significantly better.

The stress—strain curves computed by the different version of mpie_spectral are identical. In
fig. 8.1 the stress—strain curve of mpie_spectral v. 0.3 is shown as an example and compared
to the one computed by evpbj. The small observable deviations can be explained by the slightly
different constitutive laws and by numerical distortions. Also, the small strain formulation in evp5j
does not use a proper velocity gradient but an approximation valid only for small strains. This
can explain that the curves differ more for higher strain.

The vON MISES equivalent of the displacement on one side of the VE is shown in figures 8.2
and 8.3. Fig. 8.2 shows the displacement field after the first step (e33 = 0.00001). Fig. 8.3 shows
it after the last step (33 = 0.0004). The fields are shown in undistorted configuration, each
pixel corresponds to one FP. The deformation direction is denoted by arrows on the edges of the
sketched VE in the legend. The perspective of the given view is outlined by double lines in the
legend.

The displacement field computed after the first and last step of the example load case does
not appreciably differ between evp5j and mpie_spectral v. 0.1 and v. 0.2. As expected, the
displacement computed by mpie_spectral v. 0.3 is slightly different. The reason is that in this
version the deformation gradient is not symmetrized.

The vON MISES equivalent of the CAUCHY stress tensor after the first and the last step is
shown in figures 8.4 and 8.4. The stress fields computed by evphj, mpie_spectral v. 0.1, and v.
0.2 differ slightly. The deviations can only be seen if they are visualized using image processing
software. There is no difference between the results achieved by mpie_spectral v. 0.2 and v. 0.3.
This can be explained by the fact that the symmetrization of the deformation gradient results only
in a rotated stress tensor. The rotation does not affect the VON MISES equivalent of the tensor.

In summary, the results show that the integration of the spectral method into the existing
material subroutines of the MPIE is done in such a way that the results do not significantly differ

those results computed with the stand-alone version written by R. LEBENSOHN.

20

o33 [Pa]

10

[4)]

—8— evphj
—— mpie_spectral v. 0.3

I I
0e+00 le-04 2e-04 3e-04 4e-04
€3z [-]

Figure 8.1: Stress—strain curves of evp5j and mpie_spectral v. 0.3
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(a) evpsj

(c) mpie_spectral v 0.2 (d) mpie_spectral v 0.3

min R

Figure 8.2: Displacement field Hy n at €33 = 0.00001
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(a) evpsj (b) mpie_spectral v 0.1

(c) mpie_spectral v 0.2 (d) mpie_spectral v 0.3

min B e

Figure 8.3: Displacement field Hgn at €33 = 0.0004
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(a) evp5j (b) mpie_spectral v 0.1
(c) mpie_spectral v 0.2 (d) mpie_spectral v 0.3

min B [

Figure 8.4: Stress field o)\ at £33 = 0.00001
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(a) evp5j (b) mpie_spectral v 0.1

(c) mpie_spectral v 0.2 (d) mpie_spectral v 0.3

min B [

Figure 8.5: Stress field o\ at €33 = 0.0004
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8.2 Handling of large deformations

When using the large strain formulation, rotations must not result in strain or stress. A load case
consisting of a pure rotation is therefore used as a test to see if the implementation handles large
deformations correctly.

The velocity gradient applied has the form of a rotation matrix with the identity subtracted.
The load case results in a rotation through the first axis, thus the polar decomposition reads as:
F=R-I=I R,ie.V=1IandU =1. The VE rotates through 90° in 90 steps, i.e. in each
step it rotates through 1°. Since all components of the velocity gradient are defined, no stress
BCs are applied. The load case is given in the second line of listing B.2!.

The VE used for the test is a single crystal. The constitutive model is the isotropic Jo-plasticity
model that is outlined in chapter 3.4.1. The parameters are fitted in order to simulate the behavior

of an aluminum alloy. The VE is shown at different rotation angles in fig. 8.6.

1Pa

(a) 1° (b) 30° (c) 60° (d) 90°

Figure 8.6: Stress field o) resulting from pure rotation

From fig. 8.6 it can be seen that the stress is almost zero during the rotation. The small amount
of stress remains constant during the rotation. If the approximation used for the values of the
sines and cosines of the applied rotation is less accurate, the stress is much higher. Thus, the
stress can be seen as a result of numerical inaccuracies. The test proves that the implementation
handles large deformations correctly, i.e. only the stretch and not the rotational part of the applied

deformation gradient results in stress.

8.3 Comparison with FEM solutions

The close integration of the spectral method into the existing framework for CPFEM allows it to
compute the behavior of the same VE using the spectral method and the “de facto standard”
FEM. A comparison between the solution achieved by the commercial FEM solver MSC.Marc
2010 and the solution computed by the spectral method is conducted to see how the results differ
between the FEM and the spectral method. The period of time needed for the calculations is used
to estimate the performance of the spectral method compared to the FEM. Two load cases are

used for the comparison, applying plane strain (section 8.3.1) and uniaxial stress (section 8.3.2).

!The given values are truncated at seven decimal places. For the simulation, the applied values are three times
more accurate.
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The VE used for both simulations is a polycrystal consisting of 100 grains. It is discretized
by 32 FPs in each direction. The geometry file describing the VE used for the spectral method
is converted to a file format readable by the FEM-based solver. The hexaheral element that is
pretended by the spectral method is also used for the solution by means of the FEM. It is a linear
element with reduced integration capacity. The material model used is the phenomenological
powerlaw (chapter 3.4.2) with parameters set to the values known for an exemplary aluminum

alloy.

8.3.1 Plane strain

The load case used for the plane strain test consists of the stress BC Py = 0 and a velocity
gradient with L33 = —0.001s~!. All remaining components of L are set to zero. The load case is
schematically shown in the legend of fig. 8.7 with a vertical bar denoting no strain in the respective
direction. It description file is given in the third line of listing B.2.

The resulting VON MISES equivalent of the CAUCHY stress at a strain of €15 33 = —0.06 (step
62) and €1og,33 = —0.21 (step 208) is given in fig. 8.7. It can be seen that the solutions achieved
by both solvers show good correlation. Two small differences are obvious: the stress computed
by the spectral method is lower in general and its spatial distribution is more inhomogeneous.
Unfortunately, the available postprocessing facilities are likely to amplify the effects. The black
lines denoting the borders of the elements contribute to the darker appearance of the stress field
computed by the FEM solver?. The postprocessing tool of MSC.Marc uses 30 discrete values
for the coloration while gmsh uses a continuous map. This slightly contributes to the more
inhomogeneous appearance of the stress field calculated by means of the spectral method.

The period of time needed for the spectral method to compute the deformation at maximum
strain is approximately 4h. The period of the simulation is heavily determined by the calculation
of the constitutive law. The FFT and the multiplication in FOURIER space, i.e. the actual spectral
method, take only a fraction of the whole runtime. The solution by means of the FEM takes about
6d. Thus, the spectral method has shown a much better performance compared to the FEM.

Carrying out the simulation with the abort criterion ay, = 107° instead of the standard value
atol = 107* does not lead to significantly different results. Instead of needing an average of 2-3
iterations for each step, approximately 25 iterations are needed to achieve the higher accuracy.
This results in a time period for calculations that is about ten times higher than for the usual
tolerance.

Applying the load case works only up to a strain of approximately €144 33 = —0.30. It turns out
that the convergence at high deformation states is not ensured. Until now it was not possible to
undoubtedly identify the reason for this behavior. As the maximum strain at which the solution
converges depend on the parameters of the selected VE, i.e. the phase contrast, this problem
might be related to the fact that the spectral method does not converge for high phase contrasts.

Two possible solutions to overcome this problem are outlined in chapter 9.

2This effect can be seen clearly if the digital version of this thesis is viewed at a small scale.
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(a) mpie_spectral, €10g,33 = —0.06

(c) MSC.Marc, €1og,33 = —0.06
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Figure 8.7: Stress field oy resulting from plane strain
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8.3.2 Uniaxial tension

The second simulation that is compared to an FEM solution is a “tensile test”. Because the
implementation presented here is not able to handle arbitrary phase contrasts, it is not possible to
model a layer of “air” (i.e. a material with E' = 0) around the sample. Thus, necking phenomena
that occur in real tensile tests cannot be examined.

The load case is similar to the one used for the comparison between mpie_spectral and evp5j.
The VE deforms at a strain rate of €33 = 0.001s™'. The load case is given in the last line of
listing B.2.

As for the plane strain load case, the resulting vON MISES equivalent of the CAUCHY stress
is used for comparison. In fig. 8.8 the stress field is shown a strain of €jo5 33 = 0.06 (step 62)
and €133 = 0.21 (step 208). From fig. 8.8 the same conclusions can be drawn as from fig. 8.8:
the results show good correlation, but the stress computed by the spectral method in general is
slightly lower and its spatial distribution is more inhomogeneous.

The performance of the spectral method is again between one and two orders of magnitude
better compared to FEM.

Again, convergence is not ensured if the deformation reaches a strain larger then ¢;; ~ 0.30.
To check whether the discretization has an influence on the convergence, a VE consisting of 100
grains but discretized by 64 FPs in each direction is simulated. With this VE, the convergence is

still not ensured at large strains.
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Figure 8.8: Stress field o) resulting from uniaxial tension
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O Conclusions and outlook

This thesis discusses the implementation of a spectral method as an alternative solver into an
existing framework for crystal plasticity. The framework in combination with the spectral method
is used to examine the mechanical properties of materials by calculating the response of an RVE.
The spectral method implemented has been proven to be a very suitable tool for the solution
of elastoviscoplastic boundary value problems with periodic boundary conditions describing an
RVE. The results achieved compare favorably with the solutions obtained by FEM, while the
performance of the spectral method is much better compared to commercial FEM-based solvers.
For the presented simulations, the spectral method is between one and two orders of magnitude
faster than the FEM-based solver used for comparison. Thus, the spectral method is an excellent
alternative for the examination of RVEs.

To further validate the implementation, more simulations should be carried out. For the com-
parison with FEM solutions more sophisticated postprocessing tools should be implemented to
compare the various results obtained by the material subroutines in detail. Since there are de-
viations compared to solutions achieved by the FEM, not only comparisons to FEM simulations
should be conducted. It would be also important to compare the resulting stress and strain fields
to experimental data. Reading in data obtained by experiments is easy due to the simple data
format used for the geometry description. However, so far it is not possible to use data from
a pre-stressed state since the initial configuration is always stress free. An extended interface
could be implemented to read in information about the stress state on each point to continue
calculations from a pre-stressed configuration.

As outlined in chapter 8, convergence is not achieved for highly deformed configurations. The
reason for this behavior is not identified. It is possible that it is related to the fact that the
spectral method converges slowly for materials with high phase contrasts and does not converge
at all for an infinite phase contrast. Two techniques are suggested to ensure the convergence for
materials with infinite contrasted phases and speed up the rate of convergence in general. The
two methods take totally different approaches. The first approach is the augmented LAGRANGE
method proposed by J. C. MICHEL, H. MOULINEC and P. SUQUET in 2001. The second
improvement is based on the use of a modified I'-operator. It is proposed by S. BRISARD and L.
DorMIEUX in 2010. It is also possible to implement both methods at the same time, probably
resulting in an even faster convergence.

The augmented LAGRANGE method is described in [17, 20]. It uses a modified algorithm
consisting of three steps to solve a saddle-point problem describing the mechanical state of the
VE. The first step consists in solving a linear elastic problem, using a similar method to the one

presented in this thesis. An additional second step is required to solve a non-linear problem at each
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point in the VE. In the third step the LAGRANGE multiplier that is used to solve the non-linear
problem is updated.

Although their aim is the same, i.e. speeding up the calculation and ensure convergence at infinite
phase contrasts, S. BRISARD and L. DORMIEUX take a different approach [5]. An optimized
I'—operator is used in an algorithm as simple as the scheme presented in this work. It is derived
from an energy principle, not from the LIPPMANN-SCHWINGER equation that is the basis for the
algorithm presented in chapter 6.2.

Both methods are likely to speed up the calculations, even if the LAGRANGE method takes
longer for one iteration. But as fewer iterations are needed for convergence, the total runtime will

decrease.
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A Sourcecode

/

* $ld:

Listing A.1: mpie_spectral.f90

mpie_spectral.f90 683 2010—10—27 17:15:49Z MPIE\m. dieh| $

Y

!
!
!

!
!

Material subroutine for BVP solution using spectral method

written by P.
F.
L.

Eisenlohr ,
Roters ,
Hantcherli,

W.A. Counts
D.D. Tjahjanto

C.
M.
R.

MPI fuer Eisen

Kords
Diehl
Lebensohn

forschung , Duesseldorf

3 ke sk ok o ok sk o sk ok ok ok S o e sk o ok ok K S K o SR K oK Sk K o Sk o oK ok o R K o SR R o oK K R K K o oK ok R SR K o oK K oK R K R R o oK ok KR KRR K

1
!
!
1
1
!

Usage:

start program with mpie_spectral PathToGeomFile/NameOfGeom.geom
PathTolLoadFile/NameOfLoadFile. load

PathTolLoadFile
make sure the

will be the working directory
exists in

file "material.config” the working

directory

T3k ok sk ok ke ok e o ok ok o ok S o o S o oK K K K oK K o S o K o o o R K SR o o oK K R K o oK K R K o oK K o oK K o K K oK o R K R K

program mpie_spectral

3 ke sk ok e e e e sk ok o ok S e e S ok ok ok o S o K ok ok S o o o oK ok o SR S o R ok o ok S o K o ok ok S K o ok ok ok Sk K o o oK ok o R K kR

!

!

!

use mpie-interface

use prec, only: plnt, pReal

use 10

use math

use CPFEM, only: CPFEM_general

use numerics, only: err_div_tol, err_defgrad_tol, err_stress_tolrel , itmax
use homogenization, only: materialpoint_sizeResults , materialpoint_results
implicit none

include 'fftw3.f' /header file for fftw3 (declaring variables). Library file

variables to read from

real (pReal),
integer(plnt),
integer(plnt),
integer(plnt),
integer(plnt),

integer(plnt) unit,
character(len=1024) path,

loadcase and geom file

dimension (9) valuevector ! stores
parameter maxNchunkslnput=24 | 4 jdentifiers ,
dimension (1+maxNchunkslnput*2):: posinput
parameter maxNchunksGeom = 7 | 4 identifiers ,
dimension (1+2xmaxNchunksGeom):: posGeom
N_I, N.s, N_t, Non ! numbers of
line

information from

is also needed

3 values

identifiers

logical gotResolution ,h gotDimension,6 gotHomogenization
logical , dimension(9) bc_maskvector
variables storing information from loadcase file
real (pReal) timeinc
real (pReal), dimension (:,:,:), allocatable bc_velocityGrad , &
bc_stress !
real (pReal), dimension(:), allocatable bc_timelncrement ! length of increment
integer(plnt) N_Loadcases, steps
integer(plnt), dimension(:), allocatable bc_steps ! number of steps
logical , dimension(:,:,:,:), allocatable bc_mask !

variables stor
real (pReal) wgt
real (pReal),

integer(plnt) homog,

integer(plnt),

dimension (3)

ing information from geom file
geomdimension
prodnn

dimension (3) resolution
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mask of boundary conditions

2 3x3 matrices ,

loadcase file

and 2 scalars

velocity gradient and stress BC



70

80

90

100

110

120

130

140

! stress etc.

real (pReal), dimension(3,3)

real (pReal), dimension(3,3,3)

real (pReal), dimension(3,3,3,3)

real (pReal), dimension(6)

real (pReal), dimension(6,6)

real (pReal), dimension(:,:,:), allocatable
real (pReal), dimension(:,:,:,:,:), allocatable

! variables storing information for spectral method

complex(pReal), dimension(:,:,:,:,:), allocatable
complex(pReal), dimension(3,3)

real (pReal), dimension(3,3)

real (pReal), dimension(:,:,:,:,:,:,:), allocatable::
real (pReal), dimension (:,:, , allocatable

integer(plnt), dimension(3)
integer*8, dimension(2,3,3)

! convergence etc.
real (pReal)
integer(plnt)
logical

err_div, err_stress , err_defgrad,
ierr

errmatinv

! loop variables etc.
real(pReal) guessmode

err_div_temp ,

ones, zeroes, temp33_Real, damper,&
pstress , pstress_av, cstress_av, defgrad_av ,&
defgradAim , defgradAimOld, defgradAimCorr &

defgradAimCorrPrev ,
temp333_Real
dPdF, c0, sO
cstress !
dsde, c066, s066
ddefgrad
pstress_field ,

mask_stress , mask_defgrad

cauchy stress in Mandel notation

defgrad , defgradold, cstress_field

crworkfft

temp33_Complex
xinormdyad
gamma_hat

xi

k_s

plan_fft

err_stress_tol , sigma0

! flip—flop to guess defgrad fluctuation field evolution

integer(plnt) i, j, k, I, m n, p

integer(plnt) loadcase, ielem, iter, calcmode, CPFEM_mode

real (pReal) temperature ! not used, but needed for call to CPFEM_general
I'lnitializing

bc_maskvector = '’

unit = 234 _plint

ones = 1.0_pReal; zeroes = 0.0_pReal

N_l = O_plInt; N_.s = O_plInt

N_t = O_plnt; N_n = O_plInt

resolution = 1_plnt; geomdimension = 0.0 _pReal

temperature = 300.0 _pReal

gotResolution =.false.; gotDimension =.false.; gotHomogenization = .false.

if (largC() /= 2) call 10_error(102)

! check for correct number of given arguments

! Reading the loadcase file and assign variables

path = getLoadcaseName()

print*, 'Loadcase:_' trim(path)

print*, Workingdir:_", trim(getSolverWorkingDirectoryName ())

if (.not. I0O_open_file(unit,path)) call 10_error(45,ext.msg = path)

rewind (unit)

do
read (unit , ' (a1024) ' END = 101)
if (10_isBlank(line)) cycle

line

I skip empty lines

! count all
! sanity check

! error message for incomplete input file

poslinput = I0_stringPos(line ,maxNchunkslnput)
do i = 1, maxNchunkslnput, 1
select case (10_lc(1O_stringValue(line 6 poslnput, i)))
case('l', velocitygrad")
N_I = N_I+1
case('s’', 'stress')
N_s = N_s+1
case('t', 'time’, 'delta’)
N_t = N_t+1
case('n’,'incs’', 'increments’', 'steps')
N_n = N_n+1
end select
enddo
if ((N-l /= N_s).or.(N_s /= N_.t).or.(N_.t /= N.n))&
call 10_error(46,ext.-msg = path)
enddo

101 N_Loadcases = N._I
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identifiers to allocate memory and do sanity check



! allocate memory depending on lines in input file

allocate (bc_velocityGrad(3,3,N_Loadcases)); bc_velocityGrad = 0.0_pReal
allocate (bc-stress(3,3,N_Loadcases)); bc_stress = 0.0_pReal
allocate (bc_mask(3,3,2,N_Loadcases)); bc_mask = .false.

allocate (bc_timelncrement(N_Loadcases)); bc_timelncrement 0.0 _pReal
allocate (bc_steps(N_Loadcases)); bc_steps = 0_plnt

150 rewind (unit)

i = 0_plnt
do
read (unit, ' (al024)’ END = 200) line
if (10_isBlank(line)) cycle ! skip empty lines
i=1i+1
poslinput = 10_stringPos(line ,maxNchunkslnput)

do j = 1,maxNchunkslnput,2
select case (10_lc(1O0_stringValue(line 6 poslnput, j)))

case('l’', 'velocitygrad")
160 valuevector = 0.0 _pReal
forall (k = 1:9) bc-maskvector(k) = IO_stringValue(line ,poslnput,j+k) /= '#’
do k = 1,9 ! assign values for the velocity gradient matrix
if (bc_maskvector(k)) valuevector(k) = IO_floatValue(line , poslnput, j+k)
enddo
bc_mask (:,:,1,i) = reshape(bc_maskvector ,(/3,3/))
bc_velocityGrad (:,:,i) = reshape(valuevector ,(/3,3/))
case(’'s', 'stress’)
valuevector = 0.0 _pReal
forall (k = 1:9) bc-maskvector(k) = IO_stringValue(line ,poslnput,j+k) /= '#’
170 do k =1,9 ! assign values for the bc_stress matrix
if (bc_maskvector(k)) valuevector(k) = IO_floatValue(line , poslnput, j+k)
enddo
bc_mask (:,:,2,i) = reshape(bc_maskvector ,(/3,3/))
bc_stress (:,:,i) = reshape(valuevector ,(/3,3/))
case(’'t','time’, 'delta’) ! increment time
bc_timelncrement (i) = IO_floatValue(line , posinput,j+1)
case('n’,'incs’', 'increments’', 'steps') ! bc_steps
bc_steps(i) = IO_.intValue(line , poslnput,j+1)

end select
180 enddo; enddo
200 close(unit)

do i = 1, N_Loadcases
if (any(bc_mask(:,:,1,i) = bc_mask(:,:,2,i))) call 10_error(47,i) ! bc_mask consistency
print "(a,/,3(3(f12.6,x)/))",'L",bc_velocityGrad (:,:,i)
print "(a,/,3(3(f12.6,x)/)) ", bc_stress’', bc_stress (:,:,i)
print "(a,/,3(3(1,x)/)) ", bc_mask_for_velocitygrad',bc_mask(:,:,1,i)
(

print "(a,/,3(3(!,x)/)) ", bc_mask_for_stress ' bc_mask(:,:,2,i)
print *,’time’ , bc_timelncrement(i)

,bc_steps (i)

190 print *,’'incs’

print x,
enddo

!read header of geom file to get the information needed before the complete geom file is intepretated by mesh.f90
path = getSolverJobName ()

print*, ' JobName:_', trim (path)

if (.not. 10_open_file(unit, trim(path)//InputFileExtension)) call 1O_error(101,ext-msg = path)

rewind (unit)

200 do
read (unit, ' (al024)’ [END = 100) line
if (10_isBlank(line)) cycle ! skip empty lines
posGeom = |O_stringPos(line , maxNchunksGeom)

select case ( 10_lc(10_StringValue(line h posGeom,1)) )
case (’'dimension’)

gotDimension = .true.
do i = 2,6,2
select case (1O_lc(1O_stringValue(line 6 posGeom,i)))
210 case('x")
geomdimension (1) = IO _floatValue(line ,posGeom, i+1)
case('y")
geomdimension (2) = I0_floatValue(line ,posGeom, i+1)
case('z")
geomdimension(3) = I0_floatValue(line ,posGeom, i+1)
end select
enddo
case ('homogenization')
gotHomogenization = .true.
220 homog = 10_intValue(line ,posGeom,2)
case (’'resolution’)
gotResolution = .true.
do i = 2,6,2
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230

240

250

270

290

300

select case (10_lc(1O_stringValue(line 6 posGeom,i)))

case('a’)
resolution (1)
case('b")

resolution (2)

case('c’)
resolution (3)
end select

10_intValue(line ,posGeom, i+1)
10_intValue(line ,posGeom, i+1)

10_intValue(line ,posGeom, i+1)

gotResolution) exit

geomdimension

resolution (3),3,3,3,3));
resolution (3),3));

resolution (3),3,3));
resolution (3),3,3));

! for

workfft

gamma_hat

xi

pstress_field
cstress_field

defgrad

defgradold

ddefgrad

displacement

machine with 12 cores

dfftw_plan_dft_r2c_3d(plan_fft(1,m,n),resolution (1), resolution(2),resolution(3),&

workfft (:,:,:

resolution (1), resolution (2)
FFTW_PATIENT)

of CPFEM_general (= constitutive law) and of deformation gradient

do i = 1, resolution (1)

,m,n), FFTW.PATIENT)
,resolution (3),&

field

I'no deformation at the beginning

enddo

end select

if (gotDimension .and. gotHomogenization .and.
enddo
100 close(unit)
print "(a,/,i4,i4 ,i4)", 'resolution_a_-b_c’', resolution
print '(a,/,f6.1,f6.1,f6.1)", dimension_x_y_z',
print *, homogenization ' homog
allocate (workfft(resolution(1)/2+41,resolution(2),resolution(3),3,3));
allocate (gamma_hat(resolution(1)/2+1,resolution(2),
allocate (xi(resolution(1)/2+1,resolution(2),
allocate (pstress_field(resolution(1l),resolution(2),resolution(3),3,3));
allocate (cstress_field(resolution(1l),resolution(2),resolution(3),3,3));
allocate (defgrad(resolution(1),resolution(2),
allocate (defgradold(resolution(1),resolution(2),
allocate (ddefgrad(resolution(1l),resolution(2),resolution(3)));
allocate (displacement(resolution(1),resolution(2),resolution(3),3));
! Initialization of fftw (see manual on fftw.org for more details)
call dfftw_init_threads(ierr)
call dfftw_plan_with_nthreads(12)
dom=1,3; do n=1,3

call

pstress_field (:,:,: ,m,n),
call dfftw_plan_dft_c2r_3d(plan_fft(2,m,n),
workfft (:,:,:,m,n), ddefgrad(:,:,:),

enddo; enddo
prodnn = resolution(1)*resolution (2)*resolution (3)
wgt = 1_pReal/real(prodnn, pReal)
defgradAim = math_I3
defgradAimOIld = math.I3
defgrad_av = math_I3
! Initialization
ielem = O0_plnt
c066 = 0.0 _pReal
do k = 1, resolution(3); do j = 1, resolution(2);

defgradold (i ,j,k,:,:) = math_I3

defgrad(i,j,k,:,:) = math_I3

ielem = ielem +1

call CPFEM_general (2, math_13, math_13,temperature ,0.0 _pReal

c066 = c066 + dsde
enddo; enddo; enddo

c066 = c066 * wgt

c0 = math_mandel66t03333(c066)

call math_invert(6, c066, s066,i, errmatinv)

s0 = math_mandel66t03333(s066)

!calculation of xinormdyad (to calculate gamma_hat) and xi (waves,

do k =
k_s (

1, resolution(3)
3) = k—1

if(k > resolution(3)/2+1) k.s(3) = k.s(3)—resolution (3)

= 1, resolution (2)
s(2) = j—1
(j > resolution(2)/2+1) k-s(2) =
i =1, resolution(1)/2+1
kos(1) = i—1
xi(i,j,k,3) = 0.0_pReal
if (resolution(3) > 1) xi(i,j,k,3)
xi(i,j.k.2)
xi(i,j.k,1)
if (any(xi(i,j,k,:) /= 0.0_pReal)
do | =1,3; dom=1,3
xinormdyad (| ,m) = xi(i,j, k,
enddo; enddo
else
xinormdyad = 0.0 _pReal
endif
temp33_Real = math_mul3333xx33(c0,

k_s(2)—resolution (2)

= real(k-s(3), pReal)/geomdimension(3)
= real(k-s(2), pReal)/geomdimension(2)
= real(k-s(1), pReal)/geomdimension(1)
) then

) xi(i,j,k, m)/sum(xi(i,j, k,:)*=*2)

xinormdyad)
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,ielem ,1 _plnt , cstress ,dsde

, pstress ,dPdF)

for proof of equilibrium)

O O OO O oo oo

0_pReal
0 _pReal
0 _pReal
0 _pReal
0_pReal
0 _pReal
0 _pReal
0 _pReal

.0 _pReal



temp33_Real = math_inv3x3(temp33_Real)
do 1=1,3; do m=1,3; do n=1,3; do p=1,3
gamma_hat(i,j,k, | ,m,n,p) =— (0.5%xtemp33_Real(l,n)+0.5%xtemp33_Real(n, 1)) =&
(0.5%xinormdyad (m, p)+0.5%xinormdyad (p,m))
enddo; enddo; enddo; enddo
310 enddo; enddo; enddo

I write header of output file

open(538, file="results.out’, form="UNFORMATTED ")

path = getLoadcaseName ()

write (538), 'Loadcase’, trim(path)

write (538), 'Workingdir' trim(getSolverWorkingDirectoryName())
path = getSolverJobName ()

write (538), 'JobName', trim(path)//InputFileExtension

write (538), 'resolution’,’a’, resolution(l),'b’, resolution(2),'c’, resolution(3)
320 write(538), 'geomdimension’,’'x', geomdimension(1l),'y’', geomdimension(2), 'z’', geomdimension(3)
write (538), 'materialpoint.sizeResults’', materialpoint_sizeResults

write (538), 'totalincs’', sum(bc_steps)
write (538) materialpoint_results(:,1,:)
I Initialization done

T ke e e sk s e e e sk ok e e e ok o kK K ok ok e e ok ok ok ok ke o ok ok ok K ok ok ok kK ok ok ok ke ke ok o ok ok ok ok ok ke K ok ok ok K ok ok ok ok
!Loop over loadcases defined in the loadcase file

do loadcase = 1, N_Loadcases
T s ke ke ok o o ke ke K oK o o K K o e K K R K K o K K oK o K K K o R K K oK K K K o K K K K K K K KK K

330
timeinc = bc_timelncrement(loadcase)/bc_steps(loadcase)
guessmode = 0.0 _pReal ! change of load case, homogeneous guess for the first step
mask_defgrad = merge(ones, zeroes ,bc_mask(:,:,1,loadcase))
mask_stress = merge(ones, zeroes, bc_mask(:,:,2, loadcase))
damper = ones/10
I P Y
! loop oper steps defined in input file for current loadcase
do steps = 1, bc_steps(loadcase)
!*************************************************************
340 temp33_Real = defgradAim
defgradAim = defgradAim & ! update macroscopic displacement gradient (defgrad BC)
+ guessmode % mask_stress * (defgradAim — defgradAimOld) &
+ math_mul33x33(bc_velocityGrad (:,:,loadcase), defgradAim)xtimeinc
defgradAimOld = temp33_Real
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution (1)
temp33_Real = defgrad(i,j ., k,:,:)
defgrad(i,j,k,:,:) = defgrad(i,j, k,:,:)& ! old fluctuations as guess for new step
+ guessmode * (defgrad(i,j,k,:,:) — defgradold(i,j,k,:,:))& ! no fluctuations for new loadcase
350 + (1.0 _pReal—guessmode) * math_mul33x33(bc_velocityGrad (:,:,loadcase),defgradold(i,j,k,:,:))* timeinc
defgradold (i,j ,k,:,:) = temp33_Real
enddo; enddo; enddo
guessmode = 1.0 _pReal ! keep guessing along former trajectory during same loadcase
calcmode = 0_plnt ! start calculation of BC fulfillment
CPFEM._mode = 1_plnt ! winding forward
iter = 0_plnt
err_div= 2_pReal * err_div_tol ! go into loop
defgradAimCorr = 0.0 _pReal ! reset damping calculation
360 damper = damper * 0.9 _pReal

T ke e o sk o e e e ok o e e o e e K K ok o e ok ok ok o K o o o K K ok o o K ok ok o K K ok o o ke K ok o e K ok ok K K ok ok o
! convergence loop
do while( iter <= itmax .and. &
(err_div > err_div_tol .or. &

err_stress > err_stress_tol .or. &
err_defgrad > err_defgrad_tol))
iter = iter + 1
print "(3(A,15.5,tr2))’, '_Loadcase_.=_",loadcase, '_Step.—=_', steps, 'lteration.=_", iter

BTO ] sk ok o ok ok o sk ok ok ok ok ok sk ok ok ok ok ok sk o o ok o ok ok o ok Sk o oK ok o ok Sk o K ok o ok Sk o o o ok ok S ok K ok K ok o K ok

! adjust defgrad to fulfill BCs
select case (calcmode)

case (0)
print %, 'Update_Stress_Field_(constitutive_evaluation_.P(F))’
ielem = O_plnt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
call CPFEM_general (3, defgradold(i,j,k,:,:), defgrad(i,j,k,:,:), &
380 temperature , timeinc ,ielem ,1_plInt &

cstress ,dsde, pstress, dPdF)
enddo; enddo; enddo

ielem = O_plnt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
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!

ielem ielem + 1_plnt

call CPFEM_general (CPFEM_mode, & I first element in first iteration retains CPFEM_-mode 1,

! others get 2 (saves winding forward effort)

defgradold (i ,j,k,:,:), defgrad(i,j k,:,:),&
temperature ,timeinc ,ielem ,1_plnt &
cstress ,dsde, pstress, dPdF)
CPFEM_mode = 2_plnt
pstress_field(i,j k,:,:) = pstress
cstress_field (i,j,k,:,:) = math_mandel6to33(cstress)
enddo; enddo; enddo

dom=1,3; do n=1,3

pstress_av(m,n) = sum( pstress_field (:,:,: ,m,n)) * wgt
cstress_av(m,n) = sum(cstress_field (:,:,:,m,n)) * wgt
defgrad_av(m,n) = sum(defgrad (:,:,:,m,n)) * wgt

enddo; enddo

err_stress = maxval(abs(mask_stress % (pstress_av — bc_stress(:,:,loadcase))))
err_stress_tol = maxval(abs(pstress_av))xerr_stress_tolrel

print*, 'Correcting_deformation_gradient_to_fullfill _BCs’
defgradAimCorrPrev=defgradAimCorr

defgradAimCorr =—mask_stresskxmath_mul3333xx33(s0, (mask.stress*(pstress_av — bc_stress (:
do m=1,3; do n =1,3 ! calculate damper (correction is far to strong)

if ( sign(1.0_pReal, defgradAimCorr(m,n))/=sign(1.0_pReal ,h defgradAimCorrPrev(m,n))) then
damper(m,n) = max(0.01_pReal ,damper(m,n)*0.8)
else
damper(m,n) = min(1.0_pReal ,damper(m,n) =*1.2)
endif
enddo; enddo
defgradAimCorr = mask_Stressx(damper * defgradAimCorr)
defgradAim = defgradAim + defgradAimCorr

err-div=(maxval(abs(math-mul33x3_complex(workfft(resolution(1)/2+1,resolution(2)/2+1,&

,:,loadcase))))

dom=1,3; don=1,3 ! anticipated target minus current state
defgrad (:,:,: ,m,n) = defgrad(:,:,:,m,n) + (defgradAim(m,n) — defgrad_av(m,n))
enddo; enddo
err_div = 2 % err_div_tol
err_defgrad = maxval(abs(mask_defgrad * (defgrad_av — defgradAim)))
print '(a,/,3(3(f12.7,x)/)) ', '-Deformation_Gradient:__.", defgrad_av(1:3,:)
print '(a,/,3(3(f10.4,x)/)) ", '-Cauchy_.Stress_[MPa]:_." cstress_av(1:3,:)/1.e6
print '(2(a,E8.2)) ", '_error_stress cccoccoooooooo ",err_stress ,'__Tol..=_.", err_stress_tol
print '(2(a,E8.2)) ", '_error_deformation_gradient_', err_defgrad, ' __Tol..=_", err_defgrad_tol=x0.8
if(err_stress < err_stress_tol*0.8) then
calcmode =1
endif
Using spectral method to calculate the change of deformation gradient, check divergence of stress field
case (1)
print %, 'Update_Stress_Field_(constitutive_evaluation_P(F))’
ielem = O0_plnt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem ielem + 1
call CPFEM_general (3, defgradold(i,j,k,:,:), defgrad(i,j,k,:,:), &
temperature ,timeinc ,ielem ,1_piInt &
cstress ,dsde, pstress, dPdF)
enddo; enddo; enddo
ielem = O0_plnt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem ielem + 1
call CPFEM_general(2,&
defgradold (i ,j,k,:,:), defgrad(i,j k,:,:), &
temperature , timeinc ,ielem ,1 _plInt &
cstress ,dsde, pstress, dPdF)
pstress_field(i,j k,:,:) = pstress
cstress_field (i,j,k,:,:) = math_mandel6to33(cstress)
enddo; enddo; enddo
print *, 'Calculating_equilibrium_using_spectral_method’
err.div = 0.0_pReal; sigma0 = 0.0_-pReal
dom=1,3; don=1,3
call dfftw_execute_dft_r2c(plan_fft(1,m,n), pstress_field (:,:,:,m,n),workfft(:,:,:,m,n))
if (n==3) sigma0 = max(sigma0, sum(abs(workfft(1,1,1,m,:)))) !I' L infinity Norm of stress tensor
enddo; enddo 'L infinity Norm of div(stress)

resolution (3)/2+1,:,:),xi(resolution(1)/2+1,resolution(2)/2+1,resolution(3)/2+1,:)))))

do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)/2+1
temp33_Complex = 0.0_pReal
dom=1,3; don=1,3
temp33_Complex(m,n) = sum(gamma_hat(i,j,k,m,n,:,:) * workfft(i,j, k,:,:))
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enddo; enddo

workfft(i,j,k,:,:) = temp33_Complex(:,:)
enddo; enddo; enddo
workfft (1,1,1,:,:) = defgrad_av — math_I3

err_div = err_div/sigma0 ! weighting of error

dom=1,3; don=1,3

call dfftw_execute_dft_c2r(plan_fft(2,m,n), workfft(:,:,:,mn), ddefgrad(:,:,:))

defgrad (:,:,:,m,n) = defgrad (:,:,: ,m,n) + ddefgrad * wgt
pstress_av(m,n) = sum( pstress_field (:,:,:,m,n))*xwgt
cstress_av(m,n) = sum(cstress_field (:,:,:,m,n))*wgt
defgrad_av(m,n) = sum(defgrad (:,:,:,m,n))*wgt

defgrad (:,:,:,m,n)=defgrad (:,:,: ,m,n) + &

(defgradAim (m,n) — defgrad_av(m,n)) !/ anticipated target minus current state

enddo; enddo

err_stress = maxval(abs(mask_stress % (pstress_av — bc_stress(:,:,loadcase))))

err_stress_tol = maxval(abs(pstress_av))xerr_stress_tolrel
err_.defgrad = maxval(abs(mask_defgrad * (defgrad_av — defgradAim)))

I accecpt relativ error

print '(2(a,E8.2)) ", '_error_divergence "yerr_div,'__Tol..=.", err_div_tol
print '(2(a,E8.2)) ", '_error_stress ",err_stress ,'__Tol._=_.", err_stress_tol
print '(2(a,E8.2)) ", '_error_deformation_gradient_",err_defgrad, ' __Tol._=_", err_defgrad_tol
if ((err_stress > err_stress_tol .or. err.defgrad > err_defgrad_tol) .and. err_.div < err_div_tol) then
calcmode = 0 ! change to calculation of BCs, reset damper etc.
defgradAimCorr = 0.0 _pReal
damper = damper * 0.9 _pReal
endif
end select
enddo ! end looping when convergency is achieved
write(538) materialpoint_results (:,1,:) l'write to output file
print "(a,/,3(3(f12.7,x)/))"', '~-Deformation_Aim: ..___ ", defgradAim (1:3,:)
print '(a,/,3(3(f12.7,x)/))", '_-Deformation_Gradient:___.", defgrad_av(1:3,:)
print "(a,/,3(3(f10.4,x)/)) ", '-Cauchy._.Stress_[MPa]:____.", cstress_av(1:3,:)/1.e6
Print T (A) 7, sokokokokok ok ok ok ok ko ok ok ok ok ok ok koo ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ko K ok ok ok Kok k|
enddo ! end looping over steps in current loadcase
enddo ! end looping over loadcases
close (538)

do i=1,2; dom=1,3; do n=1,3
call dfftw_destroy_plan(plan_fft(i,m,n))
enddo; enddo; enddo

end program mpie_spectral

1 s ke ok ok ok o ke ke K oK o o K K A R K K e R K K K R K K R K K KKK KK K K K K oK K K K K K K R K
! quit subroutine to satisfy I|O_error

!
Iy P P Y
subroutine quit(id)

use prec

implicit none

integer(plnt) id

stop
end subroutine
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I $Id: mpie_-spectral

Listing A.2: mpie_spectral_interface.f90

_interface.f90 650 2010—09—23 08:05:50Z MPIE\m. diehl| $

3t ok sk ok o ok s o ok ok o ok S o S S o oK ok o K K oK K oK S o o SR o oK ok o R K o SR K o R K R K o oK K K K o oK K oK ok R K K oK oK K R KRR K

MODULE mpie_interface

use prec, only: plnt, pReal
character(len=64), parameter :: FEsolver = 'Spectral’
character(len=5), parameter :: InputFileExtension = '.geom’

CONTAINS

T3t ke sk ok ok ok sk o ok ok o ok S o o S o oK ok o K K oK K oK Sk oK o oK ok R K SR K o oK K R K o ok K o SR K o oK ok oK oK K o K K oK ok K R K KR K

I initialize interface module

1 e sk ok sk ok e e e o ok ok o K S o ok o ok S e o ok ok o o ok R S S o ok ok o K Sk o K ok ok S o ok ok ok Sk o kK ok K ok K

subroutine mpie_interface_init ()

write (6,%)
write (6,%) '<<<{—__m
write(6,%) '$ld:_mpi
write (6,%)

return
endsubroutine

pie_spectral_init._.—4>>>"
e_spectral_interface.f90.650.2010—09—23.08:05:50Z_MPIE\m. diehl_$"’

3 ke sk ok ok ok s o sk ok ok ok Sk o e sk o oK ok K S o SR K ok S o o Sk o oK ok o R SR o SR ok o oK K R R R o oK ok R S K o ok K oK ok K o K o Kok K R KRR K

! extract working dire

ctory from loadcase file, possibly based on current working dir

I

function getSolverWorkingDirectoryName ()

implicit none

character(len=1024) cwd,outname, getSolverWorkingDirectoryName

character(len=%), parameter :: pathSep = achar(47)//achar(92) ! forwardslash, backwardslash

call getarg(2,outname) ! path to loadFile

if (scan(outname,pathSep) =— 1) then ! absolute path given as command line
getSolverWorkingDirectoryName = outname(1l:scan(outname, pathSep, back=.true.))

else

call getcwd(cwd)

getSolverWorkingDirectoryName = trim(cwd)//'/'//outname(1l:scan (outname, pathSep, back=.true.

endif

getSolverWorkingDirectoryName = rectifyPath (getSolverWorkingDirectoryName)

return
endfunction

1 s sk s ok ok ke o e ok oK K K K
! basename of geometry

1 e o R AR KKK K

A A A KA KKK KKK KKK K KA A KA KKK KKK KKK KK KKK KA A A
file from command line arguments

e oo R R R K K o O R R R K R o o K K R R O oK R R R K K R

function getSolverJobName ()

use prec, only: plnt

implicit none

character(1024) getSolverJobName, outName, cwd
character(len=x), parameter :: pathSep = achar(47)//achar(92) / /, \

integer(plnt) posExt,

getSolverJobName =

call getarg(1l,outName

posExt = scan(outName, '. ' 6 back=.true.)

posSep = scan(outName, pathSep, back=.true.)

if (posExt <= posSep) posExt = len_trim (outName)+1 ! no extension present

getSolverJobName = outName(1l:posExt—1) ! path to geometry file (excl. extension)

if (scan(getSolverJobName , pathSep) /= 1) then ! relative path given as command line argument

call getcwd (cwd)

getSolverJobName =
else

getSolverJobName =
endif

posSep

)

rectifyPath (trim(cwd)//'/'//getSolverJobName)

rectifyPath (getSolverJobName)

getSolverJobName = makeRelativePath(getSolverWorkingDirectoryName(),&

return
endfunction

getSolverJobName)
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80 ! relative path of loadcase from command line arguments

Ry P P PP

function getlLoadcaseName()

use prec, only: plnt

implicit none

character(len=1024) getLoadcaseName, outName, cwd

character(len=x), parameter :: pathSep = achar(47)//achar(92) / /, \
90 integer(plnt) posExt,posSep
posExt = 0

call getarg(2,getLoadcaseName)
posExt = scan(getLoadcaseName, '. ' back=.true.)
posSep = scan(getLoadcaseName , pathSep, back=.true.)

if (posExt <= posSep) getLoadcaseName = trim (getLoadcaseName)//('.load") ! no extension present
if (scan(getLoadcaseName, pathSep) /= 1) then ! relative path given as command line argument
call getcwd (cwd)
100 getLoadcaseName = rectifyPath (trim(cwd)//'/'//getLoadcaseName)
else
getLoadcaseName = rectifyPath (getLoadcaseName)
endif

getLoadcaseName = makeRelativePath (getSolverWorkingDirectoryName(),&
getLoadcaseName)
return
endfunction

110
I T T e Y
! remove ../ and ./ from path
R E e e T

function rectifyPath (path)
use prec, only: plint
implicit none

120 character(len=x) path
character(len=len_trim (path)) rectifyPath
integer(plnt) i,j,k,I

!remove ./ from path
| = len_trim (path)
rectifyPath = path
do i =1,2,—-1
if ( rectifyPath(i—1:i) = './' .and. rectifyPath(i—2:i-2) /= "." ) &
rectifyPath (i —1:1) = rectifyPath(i+1:1)// -’
130 enddo

Iremove ../ and corresponding directory from rectifyPath
len_trim (rectifyPath)
i = index(rectifyPath(i:l)," ../")
j = 0_plnt
do while (i > j)
j = scan(rectifyPath (:i—2),' /", back=.true.)
rectifyPath (j+1:1) = rectifyPath(i+3:1)//repeat('-",2+i—j)
i = j+index(rectifyPath(j+1:1)," ../ ")
140 enddo
if(len_trim(rectifyPath) = 0) rectifyPath = "/’
return

endfunction rectifyPath

1 o ok ok ok KKK KKK KRR KKK K KR AR A A K KA AR AR KKK K KA A A A A KKK KKK
! relative path from absolute a to absolute b
P P Y
function makeRelativePath(a,b)

150
use prec, only: plnt

implicit none

character (len=x) :: a,b

character (len=1024) :: makeRelativePath
integer(plnt) i,posLastCommonSlash,remainingSlashes
posLastCommonSlash = 0
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160 remainingSlashes = 0
1, min(1024,len_trim(a),len_trim (b))
iti) /= b(i:i)) exit
i:i) = '/") posLastCommonSlash = i
do i = posLastCommonSlash+1,len_trim(a)
if (a(i:i) = "/') remainingSlashes = remainingSlashes + 1
enddo
makeRelativePath = repeat(’../ ' ,remainingSlashes)//b(posLastCommonSlash+1:len_trim (b))

170  return
endfunction makeRelativePath

END MODULE
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0 /% $Id: mesh.f90 661 2010—10—01 10:42:15Z MPIE\m. dieh| $
MODULE mesh
I
use prec, only: pReal,plnt
implicit none
! Generic functions, used independently of the chosen solver.
]
10 !/ _Nelems total number of elements in mesh
I _NcpElems total number of CP elements in mesh
! _Nnodes total number of nodes in mesh
! _maxNnodes max number of nodes in any CP element
!I' _maxNips max number of [IPs in any CP element
I _maxNipNeighbors max number of IP neighbors in any CP element
! _maxNsharedElems max number of CP elements sharing a node
!
I _element FEid, type(internal representation), material, texture, node indices
' _node x,y,z coordinates (initially!)
20 ! _sharedElem entryCount and list of elements containing node
!
! _mapFEtoCPelem [sorted FEid, corresponding CPid]
! _mapFEtoCPnode [sorted FEid, corresponding CPid]
!
! The following definitions are solver—dependent.
! The definitions for FEM are removed in order to get a small appendix.
! Only the routines that are especially written for the spectral method (named 'sxspectral%’') are included.
!
! _Nnodes : # nodes in a specific type of element (how we use it)
30 ! _NoriginalNodes : # nodes in a specific type of element (how it is originally defined by marc)
I _Nips : # IPs in a specific type of element
! _NipNeighbors : # IP neighbors in a specific type of element
I _ipNeighbor D A4X,—Xx,+y,—y,+z,—z list of intra—element IPs and
! (negative) neighbor faces per own IP in a specific type of element
I _NfaceNodes : # nodes per face in a specific type of element
! _nodeOnFace list of node indices on each face of a specific type of element
! _maxNnodesAtIP max number of (equivalent) nodes attached to an IP
I _nodesAtIP map IP index to two node indices in a specific type of element
I _ipNeighborhood : 6 or less neighboring IPs as [element_.num, [P_index]
40 ! _NsubNodes : # subnodes required to fully define all IP volumes
! order is 4x,—x,+y,—y,+z,—z but meaning strongly depends on Elemtype
!
integer(plnt) mesh_Nelems, mesh_NcpElems, mesh_NelemSets , mesh_maxNelemInSet
integer(plnt) mesh_Nmaterials
integer (plnt) mesh_Nnodes, mesh_maxNnodes , mesh_maxNips , mesh_maxNipNeighbors , mesh_maxNsharedElems , mesh_maxNsubNodes
integer(plnt), dimension(2) mesh_maxValStateVar = 0_plInt
character(len=64), dimension(:), allocatable:: mesh_nameElemSet, & ! names of elementSet
mesh_nameMaterial , & | names of material in solid section
50 mesh_mapMaterial ! name of elementSet for material
integer(plnt), dimension(:,:), allocatable :: mesh_mapElemSet ! list of elements in elementSet
integer(plnt), dimension(:,:), allocatable , target:: mesh_.mapFEtoCPelem, mesh_mapFEtoCPnode
integer(plnt), dimension(:,:), allocatable :: mesh_element, mesh_sharedElem
integer(plnt), dimension(:,:,:,:),allocatable:: mesh_ipNeighborhood
real (pReal), dimension (: allocatable :: mesh_subNodeCoord ! coordinates of subnodes per element
real (pReal), dimension (: allocatable :: mesh_ipVolume ! volume associated with I[P
real (pReal), dimension (: allocatable :: mesh_ipArea, & ! area of interface to neighboring IP
mesh_ipCenterOfGravity /! center of gravity of IP
60 real (pReal), dimension (:,:,:,:),allocatable :: mesh_ipAreaNormal ! area normal of interface to neighboring IP
real (pReal), allocatable :: mesh_node (:,:)
integer(plnt), dimension ( allocatable :: FE_nodesAtIP
integer(plnt), dimension ( allocatable :: FE_.ipNeighbor
integer(plnt), dimension(:,:,: allocatable :: FE_subNodeParent
integer(plnt), dimension(:,:,:,:),allocatable :: FE_subNodeOnlIPFace
integer(plnt) hypoelasticTableStyle
integer(plnt) initialcondTableStyle
70 integer(plnt), parameter FE_Nelemtypes = 1
integer(plnt), parameter FE_maxNnodes = 8
integer(plnt), parameter FE_maxNsubNodes = 0
integer(plnt), parameter FE_maxNips = 1
integer(plnt), parameter FE_maxNipNeighbors = 6
integer(plnt), parameter FE_maxmaxNnodesAtIP = 8
integer(plnt), parameter FE_NipFaceNodes = 4

Listing A.3: mesh.f90
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130

140

150

integer(plnt), dimension(FE_Nelemtypes), parameter :: FE_Nnodes = &
(/8, & ! element 117

/)

integer(plnt), dimension(FE_Nelemtypes), parameter :: FE_NoriginalNodes = &
(/8, & ! element 117

/)

integer(plnt), dimension(FE_Nelemtypes), parameter :: FE_Nips = &

(/1, & ! element 117

/)

integer(plnt), dimension(FE_Nelemtypes), parameter :: FE_NipNeighbors = &
(/6, & ! element 117

/)

integer(plnt), dimension(FE_Nelemtypes), parameter :: FE_NsubNodes = &

(/0, & ! element 117

/)

integer(plnt), dimension(FE_maxNipNeighbors, FE_Nelemtypes), parameter :: FE_NfaceNodes = &
reshape((/&

4.,4,4,4,4,4, & | element 117
/).(/FE_.maxNipNeighbors , FE_Nelemtypes/))

integer(plnt), dimension(FE_Nelemtypes), parameter :: FE_maxNnodesAtIP = &
(/8, & ! element 117

/)

integer(plnt), dimension(FE_NipFaceNodes, FE_maxNipNeighbors , FE_Nelemtypes),
reshape((/&

1,2,3,4 , & ! element 117

2,1,5,6 , &

3,2,6,7 , &

4,3,7,8 , &

4,1,5,8 , &

8,7,6,5 , &

/).(/FE_NipFaceNodes , FE_maxNipNeighbors , FE_Nelemtypes/))

CONTAINS

! subroutine mesh_init()
! function mesh_FEtoCPelement(FEid)
! function mesh_build_ipNeighorhood ()

P P T S
I initialization
1 ke o s ok o o e e o o o K o o K KR o K KR K o oK KR K o o oK KR R o K o o K KK K K o oK KK K

subroutine mesh_init (ip,element)

use mpie_interface
use prec, only: plnt
use |0, only: 1O_error,lO_open_lnputFile

use FEsolving, only: parallelExecution, FEsolving_execElem , FEsolving_execlP ,

implicit none

integer(plnt), parameter :: fileUnit = 222
integer(plnt) e,element,ip

write (6,%)

write (6,%) '<<<4+—__mesh_init_—>>>"

write (6,%) '$1d:_mesh.f90.661.2010—10—01.10:42:15Z_MPIE\m. diehl_$"’
write (6,%)

call mesh_build_FEdata() !

if (10_open_inputFile(fileUnit)) then ! —— parse info from input

select case (FEsolver)
case ('Spectral’)

call mesh_spectral_count_nodesAndElements(fileUnit)
call mesh_spectral_count_cpElements ()
call mesh_spectral_map_elements ()
call mesh_spectral_-map_nodes()
call mesh_spectral_count_cpSizes()
call mesh_spectral_build_nodes(fileUnit)
call mesh_spectral_build_elements(fileUnit)

end select
close (fileUnit)

call mesh_build_sharedElems ()
call mesh_build_ipNeighborhood ()
call mesh_build_subNodeCoords ()
call mesh_build_ipVolumes ()

call mesh_build_ipAreas ()
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get properties of the different types of elements



160 call mesh_tell_statistics ()

parallelExecution = (parallelExecution .and. (mesh_Nelems
else

call 10_error(101) ! cannot open input file
endif

FEsolving_execElem = (/1,mesh_NcpElems/)

allocate (FEsolving_execlP (2, mesh_NcpElems));

FEsolving_execlP

mesh_NcpElems))

1_plint

forall (e = l:mesh_NcpElems) FEsolving_execlP(2,e) = FE_Nips(mesh_element(2,e))
170
allocate (calcMode (mesh_maxNips , mesh_NcpElems))
write (6,%) '<<<{—__mesh_init_done—>>>"
calcMode = . false. ! pretend to have collected what first call is asking (F=1)
calcMode (ip ,mesh_.FEasCP( 'elem ' ,element)) = .true. ! first ip,el needs to be already pingponged to "calc”
lastMode = .true. ! and its mode is already known...
endsubroutine
Ry P T
! mapping of FE element types to internal representation
180 T e ke ok ok o o ke ke K oK o o K K o o e K K K o e K K K o K K oK o K K K o o R K K oK K K oK o K K K o o K K K KK K
function FE_mapElemtype(what)
use 10, only: 10._lc
implicit none
character(len=x), intent(in) what
integer(plnt) FE_mapElemtype
190 select case (1O_lc(what))
case ( 117, &
1237, &
"c3d8r’)
FE_mapElemtype = 8 ! Three—dimensional Arbitrarily Distorted linear hexahedral with reduced integration
case default
FE_mapElemtype = 0 ! unknown element —> should raise an error upstream..!
endselect
endfunction
200
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! FE to CP id mapping by binary search thru lookup array
!
! valid questions are 'elem’', ’'node’
T ke o e sk o e e e sk ok o e ok e o K K ok ok e e ok ok ok o ok o ok o ke ok ok o e K ok ok ok K ke ok ok o ok ok ok ok o K ok ok ok K K ok ok
function mesh_FEasCP(what,id)
use prec, only: plint
use 10, only: 10._lc
210 implicit none
character(len=%), intent(in) what
integer(plnt), intent(in) id
integer(plnt), dimension(:,:), pointer lookupMap
integer(plnt) mesh_FEasCP, lower , upper, center
mesh_FEasCP = O_plint
select case(10_lc(what(1:4)))
case('elem’)
220 lookupMap => mesh_mapFEtoCPelem
case( 'node ")
lookupMap => mesh_mapFEtoCPnode
case default
return
endselect
lower = 1_plnt
upper = size (lookupMap,2)
230 ! check at bounds
if (lookupMap(1l,lower) = id) then
mesh_FEasCP = lookupMap (2, lower)
return
elseif (lookupMap(1,upper) = id) then
mesh_FEasCP = lookupMap (2, upper)
return
endif
240
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! binary search in between bounds
do while (upper—lower > 1)

center = (lower+upper)/2

if (lookupMap(1l,center) < id) then

lower = center
elseif (lookupMap(1l,center) > id) then
upper = center
else
mesh_FEasCP = lookupMap (2, center)
250 exit
endif
enddo
return

endfunction
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! find face—matching element of same type

Ry P T
260 function mesh_faceMatch(elem, face)

use prec, only: plnt
implicit none

integer(plnt) face,elem
integer(plnt), dimension(2) :: mesh_faceMatch ! matching element’s ID and corresponding face ID
integer(plnt), dimension(FE_NfaceNodes(face, mesh_element(2,elem))) :: myFaceNodes ! global node ids on my face
integer(plnt) minN, NsharedElems, &

t, lonelyNode, &

270 candidateType ,candidateElem , &
i, f,n
minN = mesh_maxNsharedElems+1 I init to worst case
mesh_faceMatch = 0_plInt ! intialize to "no match found”
t = mesh_element(2,elem) ! figure elemType
do n = 1,FE_NfaceNodes(face ,t) ! loop over nodes on face

myFaceNodes(n) = mesh_FEasCP( 'node’ , mesh_element(4+FE_nodeOnFace(n,face ,t),elem)) / CP id of face node
NsharedElems = mesh_sharedElem (1, myFaceNodes(n)) !/ figure # shared elements for this node

280 if (NsharedElems < minN) then
minN = NsharedElems ! remember min # shared elems
lonelyNode = n ! remember most lonely node
endif
enddo
candidate: do i = 1,minN ! iterate over lonelyNode 's shared elements
candidateElem = mesh_sharedElem(1+i,myFaceNodes(lonelyNode)) /! present candidate elem
if (candidateElem == elem) cycle candidate ! my own element ?
290 candidateType = mesh_element(2,candidateElem) ! figure elemType of candidate
candidateFace: do f = 1,FE_maxNipNeighbors ! check each face of candidate
if (FE_NfaceNodes(f, candidateType) /= FE_NfaceNodes(face, t)) &
cycle candidateFace ! incompatible face
do n = 1,FE_NfaceNodes(f,candidateType) ! loop through nodes on face

if (all(myFaceNodes /= &
mesh_FEasCP( 'node’, &
mesh_element(4+FE_nodeOnFace(n,f,candidateType), candidateElem)))) &
cycle candidateFace ! other face node not one of my face nodes
300 enddo
mesh_faceMatch (1) = f
mesh_faceMatch (2) = candidateElem
exit candidate ! found my matching candidate
enddo candidateFace
enddo candidate

return

endfunction

310
O Y
! get properties of different types of finite elements
! assign globals:
! FE_nodesAtIP, FE_ipNeighbor, FE_subNodeParent, FE_subNodeOnlPFace
O Y
subroutine mesh_build_FEdata ()
use prec, only: plnt
implicit none

320

allocate (FE_nodesAtIP (FE_.maxmaxNnodesAtIP , FE_maxNips , FE_Nelemtypes)); FE_nodesAtIP = O_plnt
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allocate (FE_ipNeighbor (FE_maxNipNeighbors , FE_maxNips, FE_Nelemtypes)); FE_ipNeighbor = O_plnt
allocate (FE_subNodeParent (FE_maxNips , FE_maxNsubNodes, FE_Nelemtypes)); FE_subNodeParent = O_pint
allocate (FE_subNodeOnIPFace(FE_NipFaceNodes , FE_maxNipNeighbors , FE_maxNips, FE_Nelemtypes))
FE_subNodeOnlPFace=0_plint

! fill FE_nodesAtIP with data
FE_nodesAtIP (: ,: FE_Nips(8),8) = & ! element 117
reshape((/&
330 1,2,3,4,5,6,7,8 &
/) .(/FE_maxNnodesAtIP (8),FE_Nips(8)/))

I fill FE_ipNeighbor with data
FE_ipNeighbor (: FE_NipNeighbors(8) ,: FE_Nips(8),8) = & ! element 117
reshape((/&
—3,—5,—4,-2,—6,—1 &
/).(/FE_NipNeighbors (8), FE_Nips(8)/))

! fill FE_subNodeParent with data
340 !FE_subNodeParent (: FE_Nips(8),: FE_NsubNodes(8),8) ! element 117 has no subnodes

I fill FE_subNodeOnlPFace with data
FE_subNodeOnlIPFace (: FE_NipFaceNodes ,: FE_NipNeighbors (8) ,: FE_Nips(8),8) =& | element 117

reshape((/&
2, 3, 7,6, &!1
1, 5, 8, 4, &
3, 4,8, 7,&
1, 2,6, 5, &
5,6, 7, 8, &
350 1, 4, 3,2 &
/).(/FE_NipFaceNodes , FE_NipNeighbors(8),FE_Nips(8)/))

return
endsubroutine

P P
! count overall number of nodes and elements in mesh
!
! mesh_Nelems, mesh_Nnodes
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subroutine mesh_spectral_count_nodesAndElements (unit)

use prec, only: plnt
use 10
implicit none

integer(plnt), parameter :: maxNchunks = 7
integer(plnt), dimension (14+2*maxNchunks) :: pos
integer(plnt) a,b,c,i
370
integer(plnt) unit
character(len=1024) line
mesh_Nnodes = O_plInt
mesh_Nelems = O_plint
rewind (unit)
do
read (unit, '(al024)’ [END=100) line
380 if (10_isBlank(line)) cycle ! skip empty lines
pos = |O_stringPos(line ,maxNchunks)
if ( 10_1c(10_StringValue(line ,pos,1)) = 'resolution') then
do i = 2,6,2
select case (1O0_lc(1O_stringValue(line ,pos,i)))
case('a’)
a = IO.intValue(line ,pos,i+1)
case('b")
b = 10_.intValue(line ,pos,i+1)
390 case('c’)
c = I0.intValue(line ,pos,i+1)
end select
enddo
mesh_Nelems = a * b * ¢
mesh_Nnodes = (1 + a)*(1 + b)*(1 + c)
exit
endif
enddo

400 100 return

endsubroutine

75



410

420

430

440

450

460

470

480

!********************************************************************
! count overall number of cpElements in mesh

!

! mesh_NcpElems

e

subroutine mesh_spectral_count_cpElements

use prec, only: plnt
implicit none

mesh_NcpElems = mesh_Nelems
return

endsubroutine

0
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! map nodes from FE id to internal (consecutive) representation

!

! allocate globals: mesh_-mapFEtoCPnode
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subroutine mesh_spectral_map_nodes ()
use prec, only: plnt

implicit none
integer(plnt) i

allocate (mesh_mapFEtoCPnode(2, mesh_Nnodes))

forall (i = 1:mesh_Nnodes) &
mesh_mapFEtoCPnode (:,i) = i

return

endsubroutine

mesh_mapFEtoCPnode = O_plint

Y

! map elements from FE id to internal (consecutive) representation

!

I allocate globals: mesh_.mapFEtoCPelem

T

subroutine mesh_spectral_map_elements ()
use prec, only: plnt

implicit none
integer(plnt) i

allocate (mesh_mapFEtoCPelem (2, mesh_NcpElems))

forall (i = 1:mesh_NcpElems) &
mesh_mapFEtoCPelem (:,i) = i

return

endsubroutine

mesh_mapFEtoCPelem = 0_plInt
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! get maximum count of nodes, IPs, IP neighbors,

! among cpElements
!

and subNodes

' _maxNnodes, _maxNips, _maxNipNeighbors, _maxNsubNodes
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subroutine mesh_spectral_count_cpSizes ()

use prec, only: plnt
implicit none

integer(plnt) t

t = FE_mapElemtype( 'C3D8R")

mesh_maxNnodes = FE_-Nnodes(t)
mesh_maxNips = FE_Nips(t)
mesh_maxNipNeighbors = FE_NipNeighbors(t)
mesh_maxNsubNodes = FE_NsubNodes(t)

endsubroutine

/

fake 3D hexahedral 8 node 1 IP element
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! store x,y,z coordinates of all nodes in mesh

!

I allocate globals:

! _node

e

490 subroutine mesh_spectral_build_nodes (unit)

use prec, only: plnt
use 10
implicit none
integer(plnt), parameter :: maxNchunks = 7
integer(plnt), dimension (1+2*maxNchunks) :: pos
integer(plnt) a,b,c,n,i
real (pReal) X,y,2
500 logical gotResolution ,h gotDimension

integer(plnt)
character(len=64) tag

character(len=1024) line
allocate ( mesh_node (3,mesh_Nnodes) ); mesh_node = O_plInt
a = 1l_plnt
b = 1_plnt
c = 1l_plnt
510 x = 1.0_pReal
y = 1.0_pReal
z = 1.0 _pReal
gotResolution = .false.
gotDimension .false.
rewind (unit)
do
read (unit, '(al024)’ [END=100) line
if (10_isBlank(line)) cycle !
520 pos = IO_stringPos(line ,maxNchunks)
select case ( 10_lc(10_StringValue(line ,pos,1)) )
case (’'resolution’)
gotResolution = .true.
do i =2,6,2
tag 10_lc(10_stringValue(line ,pos,i))
select case (tag)
case('a’)
=1+ IO_.intValue(line h pos,i+1)
530 case('b’)
=1+ lO_.intValue(line 6 pos,i+1)
case('c’)
=1+ IO_.intValue(line 6 pos,i+1)
end select
enddo
case (’'dimension’)
gotDimension = .true.
do i 2,6,2
tag 10_lc(10_stringValue(line ,pos,i))
540 select case (tag)
case('x")
= |O_floatValue(line ,pos,i+1)
case('y')
= |O_floatValue(line ,pos,i+1)
case('z")
= |O_floatValue(line ,pos,i+1)
end select
enddo
end select
550 if (gotDimension .and. gotResolution) exit

enddo

! —— sanity checks —

if (.not.
if (a<2 .or.
if (x <= 0.0_pReal

forall

end

forall

100 return

endsubroutine

.or. ¢ < 2) call 10_error(43)

.or. y <= 0.0_pReal .or. z <= 0.0_pReal)

(n = 0:mesh_Nnodes —1)
mesh_node (1,n+1)
560 mesh_node (2,n+1)
mesh_node (3 ,n+1)

x * dble(mod(n,a) / (a—1.0_pReal))
y * dble(mod(n/a,b) / (b—1.0_pReal))
z * dble(mod(n/a/b,c) / (c—1.0_pReal))

7

call

skip empty lines

gotDimension .or. .not. gotResolution) call 10_error(42)
b < 2

10 _error (44)
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! store FEid, type, mat, tex, and node list per element
!
I allocate globals:
! _element
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subroutine mesh_spectral_build_elements (unit)

use prec, only: plnt
use 10
implicit none

integer(plnt), parameter :: maxNchunks = 7
integer(plnt), dimension (1+2*maxNchunks) :: pos
integer(plnt) a,b,c,e,i, homog

580 logical gotResolution,h gotDimension,h gotHomogenization
integer(plnt) unit
character(len=1024) line

a = 1l_plnt
b = 1_plint
c = 1l_plnt
gotResolution = .false.
gotDimension = .false.
gotHomogenization = . false.
590
rewind (unit)
do
read (unit, '(al024)’' ,[END=100) line
if (10_isBlank(line)) cycle ! skip empty lines
pos = |O_stringPos(line ,maxNchunks)
select case ( 10_lc(10_StringValue(line ,pos,1)) )
case (’'dimension’)
gotDimension = .true.

600 case ('homogenization')
gotHomogenization = .true.
homog = 10_intValue(line ,pos,h2)

case (’'resolution’)
gotResolution = .true.
do i = 2,6,2

select case (1O0_lc(l1O_stringValue(line ,pos,i)))
case('a’)
a = |O_intValue(line ,pos,i+1)
case('b’)
610 b = I0_intValue(line ,pos,i+1)
case('c’)
c = |0_intValue(line ,pos,i+1)
end select
enddo
end select
if (gotDimension .and. gotHomogenization .and. gotResolution) exit

enddo
100 allocate (mesh_element (4+mesh_maxNnodes, mesh_.NcpElems)) ; mesh_element = O_plnt
620
e = 0_plnt
do while (e < mesh_NcpElems)
read (unit, '(al024)’ [END=110) line
if (10_isBlank(line)) cycle ! skip empty lines
pos(1l:1+2x1) = IO_stringPos(line ,1)
e = e+l ! valid element entry
mesh_element ( 1l,e) = e ! FE id
mesh_element ( 2,e) = FE_mapElemtype( 'C3D8R") ! elem type
630 mesh_element ( 3,e) = homog ! homogenization
mesh_element ( 4,e) = IO_IntValue(line ,pos, K1) ! microstructure
mesh_element ( 5,e) = e + (e—1)/a + (e—1)/a/bx(a+1) ! base node
mesh_element ( 6,e) = mesh_element ( 5,e) + 1
mesh_element ( 7,e) = mesh_element ( 5,e) + (a+1) + 1
mesh_element ( 8,e) = mesh_element ( 5,e) + (a+1)
mesh_element ( 9,e) = mesh_element ( 5,e) + (a+1)x(b+1) / second floor base node
mesh_element (10,e) = mesh_element ( 9,e) + 1
mesh_element (11,e) = mesh_element ( 9,e) + (a+1) + 1
mesh_element (12,e) = mesh_element ( 9,e) + (a+1)
640 mesh_maxValStateVar (1) = max(mesh_maxValStateVar(1l), mesh_element(3,e)) I'needed for statistics
mesh_maxValStateVar(2) = max(mesh_maxValStateVar(2), mesh_element(4,e))
enddo
110 return

endsubroutine
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! get maximum count of shared elements among cpElements and
! build list of elements shared by each node in mesh
!
650 ! _maxNsharedElems
_sharedElem
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subroutine mesh_build_sharedElems ()

use prec, only: plnt
use 10
implicit none

integer(pint) e,t,n,]j
660 integer(plnt), dimension (mesh_Nnodes) :: node_count

integer(plnt), dimension (:), allocatable :: node_seen

allocate (node_seen(maxval(FE_Nnodes)))

node_count = O_plnt
do e = 1,mesh_NcpElems
t = mesh_element(2,e) ! my type
node_seen = O_plnt ! reset node duplicates
670 do j 1,FE_Nnodes(t) ! check each node of element
n = mesh_FEasCP( 'node’ ,mesh_element(4+j,e))
if (all(node_seen /= n)) node_count(n) = node_count(n) + 1_plnt ! if FE node not yet encountered —> count it
node_seen(j) = n ! remember this node to be counted already
enddo
enddo
mesh_maxNsharedElems = maxval(node_count) ! most shared node

680 allocate ( mesh_sharedElem( 14+mesh_maxNsharedElems, mesh_Nnodes) )
mesh_sharedElem = O_plInt

do e = 1,mesh_NcpElems
node_seen = O_plnt
do j = 1,FE_Nnodes(mesh_element(2,e))
n = mesh_FEasCP( 'node’ ,mesh_element(4+j ,e))
if (all(node_seen /= n)) then

mesh_sharedElem (1,n) = mesh_sharedElem (1,n) + 1 ! count for each node the connected elements
mesh_sharedElem(14+mesh_sharedElem(1,n),n) = e ! store the respective element id
690 endif
node_seen(j) = n
enddo

enddo
deallocate (node_seen)
return

endsubroutine
700
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! build up of IP neighborhood
!
! allocate globals
I _ipNeighborhood
IR P P PP P PP Ty

subroutine mesh_build_ipNeighborhood ()

use prec, only: plnt
710 implicit none

integer(plnt) e,t,i,j,k,l ,mn,a,anchor, neighborType
integer(plnt) neighbor ,neighboringElem , neighboringlP
integer(plnt), dimension(2) :: matchingElem ! face and id of matching elem
integer(plnt), dimension(FE_maxmaxNnodesAtIP) :: linkedNodes , &
matchingNodes

linkedNodes = O_plnt

720 allocate(mesh_ipNeighborhood (2, mesh_maxNipNeighbors , mesh_maxNips, mesh_NcpElems)) ; mesh_ipNeighborhood = 0_plnt

do e = 1,mesh_NcpElems ! loop over cpElems
t = mesh_element(2,e) ! get elemType
do i = 1,FE_Nips(t) ! loop over IPs of elem
do n = 1,FE_NipNeighbors(t) ! loop over neighbors of IP

neighbor = FE_ipNeighbor(n,i, t)
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if (neighbor > 0) then intra—element I[P

neighboringElem = e
neighboringlP = neighbor
730 else ! neighboring element’'s [P

neighboringElem = 0_plint
neighboringlP = 0_plnt

matchingElem = mesh_faceMatch(e,—neighbor) ! get face and CP elem id of face match
if (matchingElem(2) > O_plnt) then ! found match?

neighborType = mesh_element (2, matchingElem (2))

| = 0_plnt

do a = 1,FE_maxNnodesAtIP(t) figure my anchor nodes on connecting face

anchor = FE_nodesAtIP(a,i,t)

if (any(FE_nodeOnFace(:,—neighbor , t) = anchor)) then ! ip anchor sits on face?
740 I = I+1_plInt
linkedNodes (1) = mesh_element(4+anchor ,e) ! FE id of anchor node
endif
enddo
neighborlP: do j = 1,FE_Nips(neighborType) ! loop over neighboring ips

m = O_plnt
matchingNodes = O_plInt
do a = 1,FE_maxNnodesAtIP (neighborType)
anchor = FE_nodesAtIP(a,j,neighborType)
750 if ( anchor /= O_plnt .and. & ! valid anchor node
any(FE_nodeOnFace(:, matchingElem (1), neighborType) = anchor) ) then
m=m+l_plnt
matchingNodes(m) = mesh_element(4+anchor, matchingElem(2)) ! FE id of neighbor’'s anchor node

check each anchor node of that ip

endif
enddo
if (m/= 1) cycle neighborlP ! this ip has wrong count of anchors on face
do a =1,1I
if (all(matchingNodes /= linkedNodes(a))) cycle neighborlP
enddo
760 neighboringElem = matchingElem (2) ! survival of the fittest
neighboringlP =j

exit neighborlP
enddo neighborlP
endif ! end of valid external matching

endif ! end of internal/external matching

mesh_ipNeighborhood (1,

mesh_ipNeighborhood (2,

enddo
enddo
770  enddo

neighboringElem

= neighboringlP

El
o
|

return
endsubroutine
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! assignment of coordinates for subnodes in each cp element
!
! allocate globals
I _subNodeCoord
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subroutine mesh_build_subNodeCoords ()

use prec, only: plnt, pReal
implicit none

integer(plnt) e,t,n,p

allocate (mesh_subNodeCoord (3, mesh_.maxNnodes+mesh_maxNsubNodes , mesh_NcpElems)) ; mesh_subNodeCoord = 0.0_pReal
790 do e = 1,mesh_NcpElems ! loop over cpElems
t = mesh_element(2,e) ! get elemType
do n = 1,FE_Nnodes(t) ! loop over nodes of this element type
mesh_subNodeCoord (: ,n,e) = mesh_node (:, mesh_.FEasCP( 'node’ , mesh_element(4+n,e)))
enddo

do n = 1,FE_NsubNodes(t) now for the true subnodes
do p = 1,FE_Nips(t)
if (FE_subNodeParent(p,n,t) > 0) &

!
! loop through possible parent nodes
!
mesh_subNodeCoord (: ,n+FE_Nnodes(t),
).

valid parent node

e) =&
mesh_subNodeCoord (: ,n+FE_Nnodes(t),e) + &
800 mesh_node (:, mesh_.FEasCP( 'node ', mesh_element(4+FE_subNodeParent(p,n,t),e))) ! add up parents
enddo
mesh_subNodeCoord (:,n+FE_Nnodes(t),e)=mesh_subNodeCoord (: ,n+FE_Nnodes(t),e)/count(FE_subNodeParent(:,n,t)>0)
enddo
enddo
return

endsubroutine
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T
! calculation of IP volume
810 !/
I allocate globals
! _ipVolume
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subroutine mesh_build_ipVolumes ()
use prec, only: plnt
use math, only: math_volTetrahedron

implicit none

820 integer(plnt) e,f, t,i,j,k,n

integer(plnt),parameter:: Ntriangles = FE_NipFaceNodes—2 ! each interface is made up of this many triangles
logical(plnt),dimension(mesh_maxNnodes+mesh_maxNsubNodes ):: gravityNode ! flaglist to find subnodes determining CoG
real (pReal),dimension (3, mesh_.maxNnodes+mesh_maxNsubNodes ):: gravityNodePos ! coord. of subnodes determining CoG
real (pReal),dimension(3,FE_NipFaceNodes) :: nPos I coord. of nodes on IP face
real (pReal),dimension(Ntriangles ,FE_NipFaceNodes) :: volume ! volumes of possible tetrahedra
real (pReal),dimension(3) :: centerOfGravity
allocate (mesh_ipVolume(mesh_maxNips , mesh_NcpElems)) ; mesh_ipVolume = 0.0 _pReal
allocate (mesh_ipCenterOfGravity (3, mesh_maxNips, mesh_NcpElems)) ; mesh_ipCenterOfGravity = 0.0_pReal
830
do e = 1,mesh_NcpElems ! loop over cpElems
t = mesh_element(2,e) ! get elemType
do i = 1,FE_Nips(t) ! loop over IPs of elem
gravityNode = . false. ! reset flaglist
gravityNodePos = 0.0 _pReal ! reset coordinates
do f = 1,FE_NipNeighbors(t) ! loop over interfaces of IP
do n = 1,FE_NipFaceNodes ! loop over nodes on interface
gravityNode (FE_subNodeOnlPFace(n,f,i,t)) = .true.

gravityNodePos (:, FE_subNodeOnlPFace(n,f,i,t)) = mesh_subNodeCoord (:, FE_subNodeOnIPFace(n,f,i,t),e)
840 enddo

enddo
do j = 1,mesh_maxNnodes+mesh_maxNsubNodes—1 ! walk through entire flaglist except last
if (gravityNode(j)) then ! valid node index
do k = j+1,mesh_.maxNnodes+mesh_maxNsubNodes I walk through remainder of list to find duplicates
if (gravityNode(k) .and. all(abs(gravityNodePos(:,j) — gravityNodePos(:,k)) < 1.0e—100_-pReal)) then
gravityNode (j) = .false. ! delete first instance
gravityNodePos (:,j) = 0.0_pReal
exit ! continue with next suspect
850 endif
enddo
endif
enddo

centerOfGravity = sum(gravityNodePos ,2)/count(gravityNode)

do f = 1,FE_NipNeighbors(t) ! loop over interfaces of IP and add tetrahedra which connect to CoG
forall (n = 1:FE_NipFaceNodes) nPos(:,n) = mesh_subNodeCoord (:,FE_subNodeOnlIPFace(n,f,i, t),e)
forall (n = 1:FE_NipFaceNodes, j = 1:Ntriangles) &
! start at each interface node and build valid triangles to cover interface
860 volume(j,n) = math_volTetrahedron(nPos(:,n), & ! calc volume of respective tetrahedron to CoG
nPos(:,14+mod(n+j —1,FE_NipFaceNodes)), &
nPos(:,14+mod(n+j —0,FE_NipFaceNodes)), &
centerOfGravity)

mesh_ipVolume(i,e) = mesh_ipVolume(i,e) + sum(volume) ! add contribution from this interface
enddo
mesh_ipVolume(i,e) = mesh_ipVolume(i,e) / FE_NipFaceNodes ! renormalize with interfaceNodeNum due
mesh_ipCenterOfGravity (:,i,e) = centerOfGravity ! to loop over them
enddo

enddo
870 return

endsubroutine

,’***********************************************************

I calculation of IP interface areas

!

! allocate globals

! _ipArea, _ipAreaNormal

R P P P P P Y
880 subroutine mesh_build_ipAreas()

use prec, only: plnt, pReal
use math
implicit none

integer(plnt) e, f, t,i,j,n

integer(plnt), parameter :: Ntriangles = FE_NipFaceNodes—2 ! each interface is made up of this many triangles
real (pReal), dimension (3,FE_NipFaceNodes) :: nPos ! coordinates of nodes on IP face
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real (pReal), dimension(3,Ntriangles ,FE_NipFaceNodes) :: normal

890 real(pReal), dimension(Ntriangles ,FE_NipFaceNodes) 11 area
allocate (mesh_ipArea(mesh_maxNipNeighbors , mesh_maxNips, mesh_NcpElems)) ; mesh_ipArea = 0.0_pReal
allocate (mesh_ipAreaNormal (3, mesh_.maxNipNeighbors , mesh_.maxNips, mesh_NcpElems)) ; mesh_ipAreaNormal = 0.0_pReal
do e = 1,mesh_NcpElems ! loop over cpElems
t = mesh_element(2,e) ! get elemType
do i = 1,FE_Nips(t) ! loop over IPs of elem
do f = 1,FE_NipNeighbors(t) ! loop over interfaces of IP
forall (n = 1:FE_NipFaceNodes) nPos(:,n) = mesh_subNodeCoord (:,FE_subNodeOnlIPFace(n,f,i,t),e)
900 forall (n = 1:FE_NipFaceNodes, j = 1:Ntriangles)

! start at each interface node and build valid triangles to cover interface
normal (:,j,n)=math_vectorproduct(nPos(:,1+mod(n+j—1,FE_NipFaceNodes))—nPos(:,n),&
nPos(:,14+mod(n+j —0,FE_NipFaceNodes))—nPos(:,n)) ! calc their normal vectors

area(j,n) = dsqrt(sum(normal(:,j,n)*xnormal(:,j,n))) ! and area
end forall
forall (n = 1:FE_NipFaceNodes, j = 1:Ntriangles, area(j,n) > 0.0_pReal) &

normal (:,j,n) = normal(:,j,n) / area(j,n) ! make unit normal

mesh_ipArea(f,i,e) = sum(area) / (FE_NipFaceNodes*2.0_pReal) ! area of parallelograms instead of triangles
910 mesh_ipAreaNormal (:,f,i,e) = sum(sum(normal,3),2) / count(area > 0.0_pReal) ! average of all valid normals
enddo
enddo
enddo

return
endsubroutine

T ke o e sk o e e e sk ok o e e ok o ke K K ok o e e ok ok ok o e o ok ok ke ok ok kK ok ok ok ke ke ok ok ok ok ok ok ok ok K ok ok ok K K ok ok
! write statistics regarding input file parsing
920 ! to the output file
!
T ke o e sk o ke e e sk ok o e e ok o e K K ok ok e ok ok ok o K o o ok ok ke ok ok ok K ok ok ok e K ok ok ok ok K ok ok ok K K ok ok ok K K ok ok

subroutine mesh_tell_statistics ()

use prec, only: plnt

use math, only: math_range

use 10, only: IO_error

use debug, only: verboseDebugger

930 implicit none
integer(plnt), dimension (:,:), allocatable :: mesh_HomogMicro
character (len=64) fmt

integer(plnt) i,e,n,f, t

if (mesh_maxValStateVar(l) < 1_plnt) call IO_error(110) ! no homogenization specified
if (mesh_maxValStateVar(2) < 1_plnt) call 1O_error(120) ! no microstructure specified

allocate (mesh_.HomogMicro(mesh_maxValStateVar (1), mesh_.maxValStateVar(2))); mesh_HomogMicro = 0_plInt

940 do e = 1,mesh_NcpElems
if (mesh_element(3,e) < 1_plInt) call 10_error(110,e) ! no homogenization specified
if (mesh_element(4,e) < 1_pInt) call IO_error(120,e) ! no homogenization specified
mesh_HomogMicro(mesh_element(3,e), mesh_element(4,e)) = &
mesh_HomogMicro(mesh_element(3,e), mesh_element(4,e))+1 ! count combinations of homog. and microstructure
enddo
if (verboseDebugger) then
I$OMP CRITICAL (write2out)
write (6,%)
950 write(6,%) 'Input_Parser:_IP_COORDINATES’
write (6, (a5,x,a5,3(x,al2))") 'elem’','"IP",'x",'y', "z’
do e = 1,mesh_NcpElems
do i = 1,FE_Nips(mesh_element(2,e))
write (6, (i5,x,i5,3(x,f12.8))") e, i, mesh_ipCenterOfGravity (:,i,e)
enddo
enddo
write (6,%)
write(6,%) "Input_Parser:_IP_NEIGHBORHOOD"
write (6,%)
9260 write (6,” (al0,x,al0,x,al0,x,a3,x,al3,x,al3)") "elem” ,"IP" ," neighbor” ,”"” ," elemNeighbor” ,"ipNeighbor”
do e = 1, mesh_NcpElems ! loop over cpElems
t = mesh_element(2,e) ! get elemType
do i = 1,FE_Nips(t) ! loop over IPs of elem
do n = 1,FE_NipNeighbors(t) ! loop over neighbors of IP
write (6,” (i10 ,x,il0,x,il0,x,a3,x,il3 ,x,il3)") e,i,n, —>"&
mesh_ipNeighborhood (1,n,i,e), mesh_ipNeighborhood (2,n,i,e)
enddo
enddo
enddo
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970

980

990

1000

1010

1020

1030

write (6,%)
write (6,%) "lInput_Parser:_ELEMENT_VOLUME"
write (6,%)
write (6,"(al3,x,el5.8)") "total_volume”, sum(mesh_ipVolume)
write (6,%)
write (6,"(a5,x,ab,x,al5,x,a5,x,al5,x,al6)") "elem” ,”"IP" ,"volume” ," face” ,”area” ,"—_normal —"
do e = 1, mesh_NcpElems
do i = 1,FE_Nips(mesh_element(2,e))
write (6,"(i5,x,i5,x,e15.8)") e,i,mesh_IPvolume(i,e)
do f = 1,FE_NipNeighbors(mesh_element(2,e))
write (6,”(i33 ,x,e15.8,x,3(f6.3,x))") f,mesh_ipArea(f,i,e), mesh_ipAreaNormal(:,f,i, e)
enddo
enddo
enddo

write (6,%)
te (6,%) "Input_Parser: _SUBNODE_COORDINATES"

wri

wri

te (6,%)

write (6, (a5,x,ab,x,alb,x,al5,x,a20,3(x,al2)) ') "elem’,"IP’, " IP_neighbor’, ' IPFaceNodes’ 6 '&
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH subNodeOnlIPFace','x",'y"', "'z’

do
t
d

e
end

e = 1,mesh_NcpElems
= mesh_element(2,e)
o i = 1,FE_Nips(t)

do f = 1,FE_NipNeighbors(t)
do n = 1,FE_NipFaceNodes

loop over cpElems

get elemType

loop over IPs of elem

loop over interfaces of IP
! loop over nodes on interface

write (6, (i5,x,i5,x,i15 ,x,i15 ,x,i20 ,3(x,f12.8)) ") e,i,f,n,FE_subNodeOnIPFace(n,f,i, t) &

enddo
enddo
nddo
do

I$OMP END CRITICAL (write2out)

endif

I1$OMP CRITICAL (write2out)

write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write
write

wri
enddo
write
call

mesh_subNodeCoord (1, FE_subNodeOnIPFace(n,f,i,t), e),
mesh_subNodeCoord (2, FE_subNodeOnIPFace(n,f,i,t), e),
mesh_subNodeCoord (3, FE_subNodeOnIPFace(n,f,i,t), e)

(6.%)
(6,%) "Input_Parser: STATISTICS"

(6.%)

(6,%) mesh_Nelems, ~:.total_number_of_elements._in_mesh”

(6,%) mesh_NcpElems, ~:-total_number_of_CP_elements._in_mesh”

(6,%) mesh_Nnodes, ~:~total _number_of_nodes_in_mesh”

(6,%) mesh_maxNnodes, _:.max_.number_of_nodes_in_any_CP_element”

(6,%) mesh_maxNips, ~:o.max.number_of _IPs_in_any_CP_element”

(6,%) mesh_maxNipNeighbors, —:.max_number_of_IP_neighbors_in_any_CP_element”

(6,%) mesh_maxNsubNodes, —:-max.number_of_(additional)_subnodes_in_any_CP_element”
(6,%) mesh_maxNsharedElems, —:.max.number_of _CP_elements_sharing._a_node”

(6.%)

(6,%) "Input_Parser: .HOMOGENIZATION/MICROSTRUCTURE"

(6.%)

(6,%) mesh_maxValStateVar(1l), "_:_maximum_homogenization_index”

(6,%) mesh_maxValStateVar(2), "_:_maximum_microstructure_index”

(6.%)

(fmt,” (a,i5,a)") "(9(x),a2,x,” ,mesh_maxValStateVar(2),” (i8))"
(6,fmt) "4+—" ,math_range(mesh_maxValStateVar(2))

(fmt,” (a,i5,a)") "(i8 ,x,a2,x,"”,mesh.maxValStateVar(2),"(i8))"
do i=1,mesh_maxValStateVar(1)
te (6,fmt) i,”|." mesh.HomogMicro(i,:) ! loop over all (possibly assigned) microstrcutures

(6.%)
flush (6)

1$OMP END CRITICAL (write2out)

deallocate (mesh_HomogMicro)

return

endsubroutine

END MODULE mesh

loop over all (possibly assigned) homogenizations
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Listing A.4: makefile

cpspectral.out: mpie_spectral.o CPFEM.a
ifort —o cpspectral.out mpie_spectral.o CPFEM.a libfftw3_threads.a\
libfftw3 .a constitutive.a advanced.a basics.a —Ipthread

mpie_spectral .o: mpie_spectral.f90 CPFEM.o
ifort —c —O3 —heap—arrays 500000000 mpie_spectral.f90

CPFEM.a: CPFEM.o
ar rc CPFEM.a homogenization.o homogenization_.RGC.o homogenization_isostrain .o\
crystallite .o CPFEM.o constitutive .o

CPFEM.o: CPFEM.f90 homogenization.o
ifort —c —0O3 —heap—arrays 500000000 CPFEM. f90
homogenization.o: homogenization.f90 homogenization_isostrain.o homogenization_.RGC.o crystallite.o
ifort —c —O3 —heap—arrays 500000000 homogenization.f90
homogenization_.RGC.o: homogenization_.RGC.f90 constitutive.a
ifort —c —O3 —heap—arrays 500000000 homogenization_.RGC.f90
homogenization_isostrain.o: homogenization_isostrain.f90 basics.a advanced.a
ifort —c —O3 —heap—arrays 500000000 homogenization_isostrain.f90
crystallite.o: crystallite.f90 constitutive.a
ifort —c —O3 —heap—arrays 500000000 crystallite.f90

constitutive.a: constitutive.o
ar rc constitutive.a constitutive.o constitutive_titanmod.o constitutive_nonlocal.o\
constitutive_dislotwin.o constitutive_j2.0 constitutive_phenopowerlaw.o basics.a advanced.a

constitutive.o: constitutive.f90 constitutive_titanmod.o constitutive_nonlocal.o\

constitutive_dislotwin.o constitutive_j2.0 constitutive_phenopowerlaw.o

ifort —c —O3 —heap—arrays 500000000 constitutive.f90
constitutive_titanmod .o: constitutive_titanmod.f90 basics.a advanced.a

ifort —c —O3 —heap—arrays 500000000 constitutive_titanmod.f90
constitutive_nonlocal.o: constitutive_nonlocal.f90 basics.a advanced.a

ifort —c —O3 —heap—arrays 500000000 constitutive_nonlocal.f90
constitutive_dislotwin.o: constitutive_dislotwin.f90 basics.a advanced.a

ifort —c —03 —heap—arrays 500000000 constitutive_dislotwin.f90
constitutive_j2.0: constitutive_j2.f90 basics.a advanced.a

ifort —c —O3 —heap—arrays 500000000 constitutive_j2.f90
constitutive_phenopowerlaw.o: constitutive_phenopowerlaw.f90 basics.a advanced.a

ifort —c —03 —heap—arrays 500000000 constitutive_phenopowerlaw.f90

advanced.a: lattice.o

ar rc advanced.a FEsolving.o mesh.o material.o lattice.o

lattice.o: lattice.f90 material.o

ifort —c —O3 —heap—arrays 500000000 lattice.f90
material .o: material.f90 mesh.o

ifort —c —0O3 —heap—arrays 500000000 material.f90
mesh.o: mesh.f90 FEsolving.o

ifort —c —O3 —heap—arrays 500000000 mesh.f90
FEsolving.o: FEsolving.f90 basics.a

ifort —c —0O3 —heap—arrays 500000000 FEsolving.f90

basics.a: debug.o math.o
ar rc basics.a debug.o math.o numerics.o 10.0 mpie_spectral_interface.o prec.o

debug.o: debug.f90 numerics.o
ifort —c —03 debug.f90
math.o: math.f90 numerics.o
ifort —c —O3 math.f90
numerics.o: numerics.f90 0.0
ifort —c —O3 numerics.f90
10.0: 10.f90 mpie_spectral_interface.o
ifort —c —03 10.f90
mpie_spectral_interface.o: mpie_spectral_interface.f90 prec.o
ifort —c —0O3 mpie_spectral_interface.f90
prec.o: prec.f90
ifort —c —03 prec.f90
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B Problem set-up example files

Listing B.1: 3x3x3x5.geom

resolution a 3 b 3 c 3
dimension x 1.5 y 1.0 z 2.0
homogenization 1

1

N OO WWkHEWWRERRNNANNKEROGOOORDDRWNREWR

Listing B.2: example_loadcase.load

velocitygrad # .0 .0 .0 # .0 .0 .0 1. stress .0 # # # .0 # # # # time 0.0004 steps 40

I .0 .0 .0 .0 —1.5230484e—4 —0.0174524 .0 0.0174524 —1.5230484e—4 s # H# # H# # # # # # t 90. n 90
velocitygrad 0 .0 .0 .0 # .0 .0 .0 —.001 s # # # # .0 # # # # t 300. incs 300

velocitygrad # .0 .0 .0 # .0 .0 .0 .001 s .0 # # # .0 # # # # delta 300. increments 300
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<homogenization>

[SX]
type
Ngrains 1

isostrain

<microstructure>

[Grain001]
crystallite
(constituent)
[Grain002]
crystallite
(constituent)
[Grain003]
crystallite
(constituent)
[Grain004]
crystallite
(constituent)
[Grain005]
crystallite
(constituent)

phase

phase

phase

phase

phase

<crystallite>

[all]

(output)
(output)
(output)
(output)
(output)
(output) f
(output) fe
(output) fp
(output) ee
(output) p
(output) s

phase
volume

eulera

orientation

ngles

grainrotation

<phase>

2

[Aluminum_phenopowerlaw]

# slip only
constitution

(output)
(output)
(output)
(output)
(output)
(output)
(output)
(output)

lattice_structure

Nslip
Ntwin

cll
cl2
c44

gdotO_slip
n_slip
tauO_slip
tausat-slip
wO_slip
gdotO_twin
n_twin
tauO_twin
s_pr

Listing B.3: material.config

# microstructure 1

texture 1 fraction 1.0 # one constituent with fraction = 100%
# microstructure 2
texture 2 fraction 1.0
texture 3 fraction 1.0
texture 4 fraction 1.0
texture 5 fraction 1.0
# deviation from initial orientation as axis (1—3) and angle in degree (4)
# deformation gradient tensor; synonyms: "defgrad”
# elastic deformation gradient tensor
# plastic deformation gradient tensor
# elastic strain as Green—Lagrange tensor
# first Piola—Kichhoff stress tensor; synonyms: "firstpiola”, "lstpiola”
# second Piola—Kichhoff stress tensor; synonyms: "tstar”, "secondpiola”, "2ndpiola”
# phase 1, grains 1,2, and 3 consist of this phase

phenopowerlaw # phenopowerlaw , used for simulations 8.1 and 8.3
resistance_slip

shearrate_slip

resolvedstress_slip

totalshear

resistance_twin

shearrate_twin

resolvedstress_twin

totalvolfrac

fcc

12 0 0 O # per family

0O 0 0 O # per family
170.17e3 # copper variables
114.92e3

60.98e3

1.0

10

10.0 # per family
63e6 # per family
2.25

0.001

20

31leb # per family

0 # push—up factor for slip saturation due to twinning
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twin_b 0
twin_c 0
twin_d 0
twin_e 0
hO_slipslip 0
hO_sliptwin 0
hO_twinslip 0
hO_twintwin 0
interaction_slipslip 1114 1.4 1.4 1.4
interaction_sliptwin 1111111111111111
interaction_twinslip 1111111111111111
interaction_twintwin 11111111111111111111
relevantResistance 1
[Aluminum_J2isotropic] # phase 2, grains 4 and 5 consist of this phase
constitution j2 # J2 plasticity , used for simulation 8.2
(output) flowstress
(output) strainrate
cll 110.9e9
cl2 58.34€9
taylorfactor 3
tau0 31le6
gdot0 0.001
n 20
ho 75e6
tausat 63e6
wo 2.25
atol_resistance 1
4L
<texture>
#
[Grain001] # names are arbitrary , but as each grain has its own texture the same names are used
(gauss) phil 359.121452 Phi  82.319471 Phi2 347.729535 scatter 0 fraction 1
[Grain002] # texture 2
(gauss) phil 269.253967 Phi 105.379919 Phi2 173.029284 scatter 0 fraction 1
[Grain003]
(gauss) phil 26.551535 Phi 171.606752 Phi2 124.949264 scatter 0 fraction 1
[Grain004]
(gauss) phil 123.207774 Phi 124.339577 Phi2 47.937748 scatter 0 fraction 1
[Grain005]

(gauss) phil 324.188825 Phi 103.089216 Phi2 160.373624 scatter 0 fraction 1
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C License information

The copyright of all figures in this work belongs to author or the involved organization, except of

the figures mentioned below. All files were accessed on 14t November 2010.

Fig. 2.1:
File is licensed under the Creative Commons Attribution 3.0 unported license. You are free:

e to share - to copy, distribute and transmit the work

e to remix - to adapt the work
Under the following conditions:

e attribution - You must attribute the work in the manner specified by the author or licensor

(but not in any way that suggests that they endorse you or your use of the work).

The license can be found at: http://creativecommons.org/licenses/by/3.0/deed.en

Source: http://commons.wikimedia.org/wiki/File:Continuum_body_deformation.svg

Fig. 3.1:
File is public domain.

Source: http://commons.wikimedia.org/wiki/File:Close_packing.svg

Fig. 3.2 and fig. 3.2:
Copyright belongs to the uploader, Baszoetekouw, all rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the following

conditions are met:

¢ Redistributions of source code must retain the above copyright notice, with the name of the

uploader, and this list of conditions;

e Redistributions in binary form must reproduce the above copyright notice, with the name
of the uploader, and this list of conditions in the documentation and/or other materials

provided with the distribution;

o Neither the name of the uploader nor the names of its contributors may be used to endorse

or promote products derived from this software without specific prior written permission.

Source: http://en.wikipedia.org/wiki/File:Lattice_body_centered_cubic.svg
Source: http://en.wikipedia.org/wiki/File:Lattice_body_centered_cubic.svg

89


http://creativecommons.org/licenses/by/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Continuum_body_deformation.svg
http://commons.wikimedia.org/wiki/File:Close_packing.svg
http://en.wikipedia.org/wiki/File:Lattice_body_centered_cubic.svg
http://en.wikipedia.org/wiki/File:Lattice_body_centered_cubic.svg

90



List of Figures

1.1

2.1
2.2

3.1
3.2
3.3
3.4
35
3.6

7.1
7.2
7.3

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Volume element consisting of 50 periodically repeating grains . . . . . . .. ... 1

Continuum body shown in undeformed and a deformed configuration . . . . . . . 3

Behavior of different strain measures for tension and compression . . . . . . . ..

Stacking order of the hcp and the fcc lattice . . . . . . . .. .. .. ... .... 12
Bee lattice . . . . . L 12
Fcc lattice . . . . . . . 12
Elastic and plastic deformation . . . . . .. .. ... 13
Undistorted lattice compared to a lattice with an edge and a screw dislocation . 15
Twinned crystal . . . . . . .. 16
Volume element consisting of 200 grains discretized by 643 FPs . . . . . . . .. 37
Hexahedral finite element with one integration point . . . . . . . ... ... .. 37
Assembly of the VE . . . . . . . . .. 37
Stress—strain curves of evphj and mpie_spectral v. 0.3 . . . . . . . ... ... .. 49
Displacement field Hp 1 at €33 = 0.00001 . . . . .. ... ... ... ... .. 50
Displacement field Hy v at €33 =0.0004 . . . . ... ... ... ... ... .. 51
Stress field oy at €33 = 0.00001 . . . . . . . .. 52
Stress field oz at €33 =0.0004 . . . . . L 53
Stress field o\ resulting from pure rotation . . . . . . . .. ... ... 54
Stress field oy resulting from plane strain . . . . . . . ... ... L. 56
Stress field o\ resulting from uniaxial tension . . . . . .. .. .. ... 58

91



List of Tables

2.1
2.2
2.3

8.1

Definition of strain measures and behavior for tension and compression. . . . . .

Stress and strain in different configurations . . . . . ... .. 0oL

Polar decomposition

Properties of the different versions of mpie_spectral compared to evp5j . . . . .

Listings

7.1
7.2
Al
A2
A3
A4
B.1
B.2
B.3

Example material configuration file . . . . . . .. ... ... oL

Summarized algorithm . . . . . . ..

mpie_spectral.f90

mpie_spectral_interface.f90 . . . . . . . . .. ...

mesh.f90 . . . ..
makefile . . . ..

3x3x3x5.geom . . .

example_loadcase.load . . . . . . . . . .. ..o

material.config

92

39
46
61
68
71
84
85
85
86



Bibliography

[1]
]

3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

H.-J. Bargel and G. Schulze. Werkstoffkunde. Springer Verlag, Berlin, 7th edition, 2000.

K.-J. Bathe. Finite-Elemente-Methoden. Aus dem Englischen von Peter Zimmermann.
Springer Verlag, Berlin, 2"¢ edition, 2002.

T. Beth. Verfahren der schnellen FOURIER- Transformation. B. G. Teubner, Stuttgart, 1984.
J. P. Boyd. CHEBYSHEV and FOURIER spectral methods. Dover, New York, 2001.

S. Brisard and L. Dormieux. FFT-based methods for the mechanics of composites: A general
variational framework. Comp. Mater. Sci., 49:663-671, 2010.

C. M. Brown, W. Dreyer, and W. H. Miiller. Discrete FOURIER transforms and their ap-
plication to stress—strain problems in composite mechanics. A convergence study. Proc. R.
Soc. Lond. A, 458:1967-1987, 2002.

J. W. Christian and S. Mahajan. Deformation twinning. Progress in Materials Science, 309:
1-157, 1995.

S. S. Bayin. Mathematical methods in science and engineering. Wiley-Interscience, Hoboken,
2006.

O. Follinger. LAPLACE- und FOURIER- Transformation. Hiithig, Heidelberg, 1986.

T. Kanit. Notion of representative volume element for heterogeneous materials: Statistical

and numerical approach. PhD thesis, Ecole des mines de Paris, May 2003.

J. K. Knowles. On the representation of the elasticity tensor for isotropic materials. Journal
of elasticity, 39:175-180, 1995.

N. Lahellec, J. C. Michel, H. Moulinec, and P. Suquet. Analysis of inhomogeneous materials
at large strains using fast FOURIER transforms. In C. Miehe, editor, IUTAM symposium on
computational mechanics of solid materials at large strains, pages 247-258. Kluwer Academic
Publishers, Dordrecht, 2001.

C. Lanczos. Linear differential operators. D. van Nostrand company limited, London, 1961.

R. A. Lebensohn. N-site modeling of a 3D viscoplastic polycrystal using fast FOURIER
transforms. Acta Materalia, 49:2723-2737, 2001.

93



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

H. Lippman. Mechanik des plastischen FlieBens. Springer Verlag, Berlin, 1981.

F. Matteo and S. G. Johnson. The design and implementation of FFTW3. Proceedings of
the IEEE, 93(2):216-231, 2005. Special issue on “Program generation, optimization, and

platform adaptation”.

J. C. Michel, H. Moulinec, and P. Suquet. A computational scheme for linear and non-linear
composites with arbitrary phase contrast. Int. J. Numer. Meth. Engng., 52:139-160, 2001.

J.C. Michel, H. Moulinec, and P. Suquet. Effective properties of composite materials with
periodic microstructure. A computational approach. Comput. Methods Appl. Mech. Engrg.,
172:109-143, 1999.

H. Moulinec and P. Suquet. A numerical method for computing the overall response of
nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Engrg.,
157:69-94, 1998.

H. Moulinec and P. Suquet. Comparison of FFT-based methods for computing the response

of composites with highly contrasted mechanical properties. Physica B, 338:58-60, 2003.

T. Mura. Micromechanics of defects in solids. Kluwer Academic Publishers, Dordrecht, 2nd
edition, 1987.

S. Neumann, K. P. Herrmann, and W. H. Miller. FOURIER transforms - An alternative
to finite elements for elastic—plastic stress—strain analyses of heterogeneous materials. Acta
Mechanica, 149:149-160, 2001.

T. K. Nguyen, K. Sab, and G. Bonnet. GREEN's operator for a periodic medium with
traction-free boundary conditions and computation of the effective properties of thin plates.
Int. J. of Solids and Structures, 45:6518-6534, 2008.

E. L. Ortiz. The 7 method. SIAM Journal on Numerical Analysis, 6(2):480—492, 1969.

A. Prakash and R. A. Lebensohn. Simulation of micromechanical behavior of polycrystals:
Finite elements versus fast FOURIER transforms. Modelling Simul. Mater. Sci. Eng., 17(6),
20009.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in
Fortran 77. The art of scientific computing. Cambridge University Press, Cambridge, 2"
edition, 1992.

D. Rabenstein. Fortran 90 Lehrbuch. Carl Hanser Verlag, Miinchen/Wien, 1995.

F. Roters. Advanced material models for the crystal plasticity finite element method. Handed
in November 2010, presumably published in 2011. Habilitationsschrift RWTH Aachen.

F. Roters, P. Eisenlohr, T. R. Bieler, and D. Raabe. Crystal plasticity finite element methods

in material science and engineering. Wiley-VCH, Weinheim, 2010.

94



[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

A.A. Salem, S.R. Kalidindi, and S.L. Semiatin. Strain hardening due to deformation twinning
in a-titanium: Constitutive relations and crystal-plasticity modeling. Acta Materialia, 53
(12):3495-3502, 2005.

R. Sedla¢ek. Finite Elemente in der Werkstoffmechanik. Verlag Dr. Hut, Miinchen, 2009.

L. N. Trefethen. Finite difference and spectral methods for ordinary and partial differential
equations. Unpublished text, 1996. URL http://web.comlab.ox.ac.uk/people/Nick.
Trefethen/pdetext.html.

V. Vinogradov and G. W. Milton. An accelerated FFT algorithm for thermoelastic and
nonlinear composites. Int. J. Numer. Meth. Engng., 67(11):1678-1695, 20009.

W. A. Wall and B. Bornemann. Vorlesungsbegleitendes Skript ,,Grundlagenfach Mechanik:
Nichtlineare Kontinuumsmechanik”. TU Minchen, WS 2007.

W. A. Wall, L. Wiechert, and S. Tinkl. Vorlesungsbegleitendes Skript , Nichtlineare Finite-
Element-Methoden*. TU Miinchen, SS 2009.

E. Werner. Vorlesungsbegleitendes Skript ,,Werkstoffkunde 1". TU Miinchen, WS 2007.

X. Wu, S. R. Kalidindi, C. Necker, and A. A. Salem. Prediction of crystallographic texture
evolution and anisotropic stress—strain curves during large plastic strains in high purity a-
titanium using a taylor-type crystal plasticity model. Acta Materialia, 55(2):423-432, 2007.

95


http://web.comlab.ox.ac.uk/people/Nick.Trefethen/pdetext.html
http://web.comlab.ox.ac.uk/people/Nick.Trefethen/pdetext.html

	Acknowledgements
	Nomenclature
	Introduction
	Continuum mechanics
	Configurations
	Deformation and strain measures
	Polar decomposition
	Velocity gradient
	Stress measures
	Constitutive relation

	Mechanical behavior of crystalline structures
	Crystalline structures
	Elastic response
	Plastic response
	Dislocations
	Twinning

	Constitutive models
	J2-plasticity
	Phenomenological powerlaw


	Green's function method
	Fourier transform
	Discrete Fourier transform
	Fast Fourier transform
	FFTW

	Spectral methods
	Basic concept
	Small strain formulation
	Large strain formulation
	Numerical aspects


	Implementation
	Problem set-up
	Geometry specification
	Material specification
	Load case specification

	Initialization
	Load case
	Geometry
	FFTW
	Wavenumbers and -operator

	Execution loop
	Global deformation gradient
	Local deformation gradient

	Output
	Resulting algorithm

	Simulation results
	Proof of correct implementation
	Handling of large deformations
	Comparison with FEM solutions
	Plane strain
	Uniaxial tension


	Conclusions and outlook
	Sourcecode
	Problem set-up example files
	License information
	List of Figures
	List of Tables
	Listings
	Bibliography

