Features

Isotropic version of the Peirce, Asaro, & Needleman (1983) phenomenological crystal plasticity constitutive law. The von Mises stress related to the second invariant $J_2 = \frac{1}{2} \tnsr S^* : {\tnsr S^*}^\text T$ of the stress deviator $\tnsr S^* = \operatorname{dev} (\tnsr S) = \tnsr S - \frac{1}{3} \operatorname{tr} (\tnsr S)$ is considered as driving dislocation motion in lieu of slip system-resolved shear stresses.


parent_gray

Microstructure parameterization

The microstructure is parameterized by a single internal state variable that captures the resistance to deformation:
  • flowstress $g$


parent_gray

Kinetics

Deformation

In accordance with the Peirce, Asaro, & Needleman (1983) law, the (average) shear rate is formulated as a power-law kinetic equation \begin{equation} \label{eq: shear rate} \dot\gamma = \dot\gamma_0 \left( \frac{\sqrt{3 J_2}}{M\,g} \right)^n = \dot\gamma_0 \left( \sqrt{\frac{3}{2}}\,\frac{\| \tnsr S^* \|}{M\,g} \right)^n, \end{equation} with $\dot\gamma_0$ a reference shear rate, $n$ the stress exponent (at constant structure), and $M$ an orientation (Taylor) factor.

Structure

Again following the hardening behavior suggested in Peirce, Asaro, & Needleman (1983) the flow stress $g$ evolves in time due to deformation from its initial value $g_0$ towards a saturation value $g_\infty$ according to \begin{align} \label{eq: hardening} \dot g &= \dot\gamma \left( h_0 + h_\text s \ln{\dot\gamma} \right) \left| 1 - g/g_\infty \right|^a \operatorname{sign} \left( 1 - g/g_\infty \right), \end{align} with free parameters $h_0$ and $a$. The parameter $h_\text s = \mathrm d h_0/\mathrm d \ln \dot\gamma$ introduces a strain rate sensitivity of the hardening slope.

To capture more than the power-law rate dependency of the saturation stress inherent in \eqref{eq: shear rate}, we make use of the empirical relation \begin{align} \dot\gamma &= A\left( \sinh \left( B\, g_\infty^\ast\right)^C \right)^D \nonumber \\ &= A\left( \sinh \left( B\, g_\infty\left(\dot\gamma/\dot\gamma_0\right)^{1/n}\right)^C \right)^D, \end{align} where the factor $\left(\dot\gamma/\dot\gamma_0\right)^{1/n}$ corrects the (experimentally observed) saturation stress $g_\infty^\ast$ for the rate sensitivity introduced by the deformation kinetics \eqref{eq: shear rate}. Parameters $A$, $B$, $C$, and $D$ allow for fitting.

The value of $A$ is used to switch between constant saturation stress and rate-sensitive saturation behavior: \begin{equation} g_\infty = \begin{cases} \tau_\text{sat} & \text{if } A = 0 \\ \tau_\text{sat} + \left.\left( \operatorname{asinh} \left( \left( \dot\gamma/A \right)^{1/D} \right) \right)^{1/C} \middle/ \left(B \left( \dot\gamma/\dot\gamma_0 \right )^{1/n}\right)\right. & \text{otherwise} \end{cases} \end{equation}


parent_gray

Kinematics

Plastic velocity gradient

Instead of summing the different slip system contributions ($\dot\gamma^\alpha\, \vctr b^\alpha \otimes \vctr n^\alpha$) to the plastic velocity gradient as is done in Peirce, Asaro, & Needleman (1983), in the present model the "direction" of $\tnsr L_\text p$ is set equivalent to that of $\tnsr S^*$:

\begin{align} \tnsr L_\text p = \frac{\dot\gamma}{M}\, \frac{\tnsr S^*}{\| \tnsr S^*\|} &= \underbrace{\frac{\dot\gamma_0}{M} \left( \sqrt{\frac{3}{2}}\frac{1}{M\, g}\right)^n}_{k} \, \tnsr S^*\, \| \tnsr S^*\|^{n-1} \end{align} where $k$ abbreviates the constant prefactor in preparation of the next section.

Tangent $\partial\tnsr L_\text p / \partial \tnsr S$

The sensitivity of the plastic velocity gradient with respect to the second Piola–Kirchhoff stress is a required output of all plastic constitutive laws and used in the implicit stress calculation. In the following, we mostly adopt the elegant notation scheme introduced by Olaf Kintzel.

\begin{align*} \tnsr L_\text p,_{\scriptstyle\tnsr S} & = \tnsr L_\text p,_{\scriptstyle\tnsr S^*} \lcontract \,\tnsr S^*,_{\scriptstyle\tnsr S} \\ & = \tnsr L_\text p,_{\scriptstyle\tnsr S^*} \lcontract \underbrace{\left[ \tnsr I \otimes \tnsr I - \frac{1}{3} \tnsr I \odot \tnsr I \right]}_{\tnsrfour Q} \\ & = k \left[\tnsr S^* \|\tnsr S^*\|^{n-1} \right],_{\scriptstyle\tnsr S^*} \lcontract \,\tnsrfour Q \\ & = k \left[ \tnsr S^* \odot \left[{{\| \tnsr S^* \|}^{n-1}} \right],_{\scriptstyle\tnsr S^*} + \| \tnsr S^* \|^{n-1} \, \tnsr S^*,_{\scriptstyle\tnsr S^*} \right] \lcontract \, \tnsrfour Q \\ & = k \left[ \tnsr S^* \odot ( n-1 ) \|\tnsr S^*\|^{n-2} \, \frac{\tnsr S^*}{\| \tnsr S^* \|} + \| \tnsr S^*\|^{n-1} \, \tnsr I \otimes \tnsr I \right] \lcontract \, \tnsrfour Q \\ & = k \left[ \tnsr S^* \odot \tnsr S^* ( n-1 ) \|\tnsr S^*\|^{n-3} + \| \tnsr S^* \|^{n-1} \, \tnsr I \otimes \tnsr I \right] \lcontract \, \tnsrfour Q \\ & = k \left[ \tnsr S^* \odot \tnsr S^* ( n-1 ) \|\tnsr S^*\|^{n-3} \right] \lcontract \tnsrfour Q + k \, \| \tnsr S^* \|^{n-1} \, \tnsrfour Q \\ & = k \, \| \tnsr S^* \|^{n-1} \, \tnsrfour Q + k ( n-1 ) \, \|\tnsr S^*\|^{n-3} \, \left[ \tnsr S^* \odot \tnsr S^* \lcontract \, \tnsr I \otimes \tnsr I - \frac{1}{3}\, \tnsr S^* \odot \tnsr S^* \lcontract \, \tnsr I \odot \tnsr I \right] \\ & = k \, \| \tnsr S^* \|^{n-1} \, \tnsrfour Q + k \left( n-1 \right) \, \|\tnsr S^*\|^{n-3} \, \left[ \tnsr S^* \odot \tnsr S^* - \frac{1}{3} \underbrace{(\tnsr S^* : \tnsr I)}_{=\,\operatorname{tr}(\tnsr S^*)\,=\,\tnsr 0} \tnsr S^* \odot \tnsr I \right] \\ & = k \, \| \tnsr S^* \|^{n-1} \, \tnsrfour Q + k \left( n-1 \right) \, \|\tnsr S^*\|^{n-3} \, \tnsr S^* \odot \tnsr S^* \\ & = k \, \| \tnsr S^* \|^{n-1} \left[ \tnsrfour Q + ( n-1 ) \, \frac{\tnsr S^*}{\| \tnsr S^* \|} \odot \frac{\tnsr S^*}{\| \tnsr S^* \|} \right] \end{align*} It is useful to rewrite this equation in index notation. \begin{align*} & \vctr g^i \otimes \vctr g_k \otimes \vctr g_l \otimes \vctr g^j \ \frac{\partial \{L_\text p\}_{ij}}{\partial S_{kl}} = \\ & \vctr g^i \otimes \vctr g_k \otimes \vctr g_l \otimes \vctr g^j \ k \, \| \tnsr S^* \|^{n-1} \left[ \delta_i^k\,\delta^l_j - 1/3\; \delta_{ij}\,\delta^{kl} + (n-1)\| \tnsr S^* \|^{-2} \, {S^*}_{ij}\, {S^*}^{kl} \right] \end{align*}

A change of tensor basis is performed to transform $\left [\tnsr L_\text p,_{\scriptstyle\tnsr S}\right]^\text R = \tnsr L_\text p;_{\scriptstyle\tnsr S}$. In index notation, this corresponds to: \begin{align*} \Big[\vctr g^i \otimes \vctr g_k \otimes \vctr g_l \otimes \vctr g^j & \ k \, \| \tnsr S^* \|^{n-1} \left[ \delta_i^k\,\delta^l_j - 1/3\; \delta_{ij}\,\delta^{kl} + (n-1)\| \tnsr S^* \|^{-2} \, {S^*}_{ij}\, {S^*}^{kl} \right]\Big]^\text R = \\ \phantom{\Big[}\vctr g^i \otimes \vctr g^j \otimes \vctr g_k \otimes \vctr g_l & \ k \, \| \tnsr S^* \|^{n-1} \left[ \delta_i^k\,\delta^l_j - 1/3\; \delta_{ij}\,\delta^{kl} + (n-1)\| \tnsr S^* \|^{-2} \, {S^*}_{ij}\, {S^*}^{kl} \right] = \tnsr L_\text p;_{\scriptstyle\tnsr S} \end{align*}


parent_gray

Parameters in material configuration

To set the above parameters use the following (case-insensitive) naming scheme in a material.config file:

Parameter Name
$ \dot\gamma_0 $ gdot0
$ M $ Taylorfactor
$ n $ n
$ h_0 $ h0
$ h_\text s $ h0_slope, slopeLnRate
$ g_0 $ tau0
$ g_\infty $ tausat
$ A $ tausat_sinhFitA
$ B $ tausat_sinhFitB
$ C $ tausat_sinhFitC
$ D $ tausat_sinhFitD
$ a $ a, w0


parent_gray

Appendix

In the following, $\tnsr A$ denotes an arbitrary second-order tensor and $\tnsr I$ the second-order identity tensor. Notation of operators is explained in detail here.

Norm of a tensor

\[ \|\tnsr A\| := \left( \tnsr A \cdot \tnsr A\right)^{1/2} \]

Deviatoric part of a tensor

\[ \tnsr A^* := \operatorname{dev}\tnsr A = \tnsr A - \tnsr I \operatorname{tr} (\tnsr A)/3 \]

Derivative of the norm of a tensor with respect to that tensor

\begin{align*} \| \tnsr A \|_{,\tnsr A} & = \left[ \left( \tnsr A \cdot \tnsr A \right)^{1/2} \right]_{,\tnsr A} \\ & = \frac{1}{2} \left( \tnsr A \cdot \tnsr A \right)^{-1/2} \left( \tnsr A \cdot \tnsr A \right)_{,\tnsr A} \\ & = \frac{1}{2} \frac{1}{\| \tnsr A \|} \left[ \tnsr A_{,\tnsr A} \rcontract \tnsr A + \tnsr A \lcontract \tnsr A_{,\tnsr A} \right] \\ & = \frac{1}{2} \frac{1}{\| \tnsr A \|} \left[ \tnsr I \otimes \tnsr I \rcontract \tnsr A + \tnsr A \lcontract \tnsr I \otimes \tnsr I \right] \\ & = \frac{\tnsr A}{\|\tnsr A\|} \end{align*}

Derivative of the deviator of a tensor with respect to that tensor

\begin{align*} \tnsr A^*_{,\tnsr A} & = \left[\tnsr A - \tnsr I \operatorname{tr} (\tnsr A)/3 \right]_{,\tnsr A} \\ & = \tnsr A_{,\tnsr A} - \frac{1}{3} \left[ \tnsr I \odot \operatorname{tr}(\tnsr A)_{, \tnsr A} \right] \\ & = \tnsr I \otimes \tnsr I - \frac{1}{3} \tnsr I \odot \tnsr I \end{align*}


parent_gray

References

[1]
D. Peirce, R. Asaro, & A. Needleman
Material rate dependence and localized deformation in crystalline solids
Acta Metall. 31 (1983) 1951–1976

This topic: Documentation > Background > Plasticity > J2
Topic revision: 07 Mar 2015, PhilipEisenlohr
This site is powered by FoswikiCopyright by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding DAMASK? Send feedback
§ Imprint § Data Protection