Mapping homochoric <-> cubochoric. More...
| Functions/Subroutines | |
| pure real(preal) function, dimension(3), public | lambert_cubetoball (cube) | 
| map from 3D cubic grid to 3D ball  More... | |
| pure real(preal) function, dimension(3), public | lambert_balltocube (xyz) | 
| map from 3D ball to 3D cubic grid More... | |
| pure integer function, dimension(3) | getpyramidorder (xyz) | 
| determine to which pyramid a point in a cubic grid belongs  More... | |
| Variables | |
| real(preal), parameter | spi = sqrt(PI) | 
| real(preal), parameter | pref = sqrt(6.0_pReal/PI) | 
| real(preal), parameter | a = PI**(5.0_pReal/6.0_pReal)/6.0_pReal**(1.0_pReal/6.0_pReal) | 
| real(preal), parameter | ap = PI**(2.0_pReal/3.0_pReal) | 
| real(preal), parameter | sc = A/AP | 
| real(preal), parameter | beta = A/2.0_pReal | 
| real(preal), parameter | r1 = (3.0_pReal*PI/4.0_pReal)**(1.0_pReal/3.0_pReal) | 
| real(preal), parameter | r2 = sqrt(2.0_pReal) | 
| real(preal), parameter | pi12 = PI/12.0_pReal | 
| real(preal), parameter | prek = R1 * 2.0_pReal**(1.0_pReal/4.0_pReal)/BETA | 
Mapping homochoric <-> cubochoric.
D. Rosca, A. Morawiec, and M. De Graef. “A new method of constructing a grid in the space of 3D rotations and its applications to texture analysis”. Modeling and Simulations in Materials Science and Engineering 22, 075013 (2014).
| 
 | private | 
determine to which pyramid a point in a cubic grid belongs
Definition at line 186 of file Lambert.f90.
Referenced by lambert_balltocube(), and lambert_cubetoball().
 Here is the caller graph for this function:
 Here is the caller graph for this function:| pure real(preal) function, dimension(3), public lambert::lambert_balltocube | ( | real(preal), dimension(3), intent(in) | xyz | ) | 
map from 3D ball to 3D cubic grid 
 
Definition at line 132 of file Lambert.f90.
References beta, prec::deq0(), getpyramidorder(), math::math_clip(), pi12, pref, r1, r2, and sc.
Referenced by rotations::ho2cu().
 Here is the call graph for this function:
 Here is the call graph for this function: Here is the caller graph for this function:
 Here is the caller graph for this function:| pure real(preal) function, dimension(3), public lambert::lambert_cubetoball | ( | real(preal), dimension(3), intent(in) | cube | ) | 
map from 3D cubic grid to 3D ball
Definition at line 76 of file Lambert.f90.
References ap, prec::deq0(), getpyramidorder(), math::pi, pi12, pref, prek, r2, sc, and spi.
Referenced by rotations::cu2ho().
 Here is the call graph for this function:
 Here is the call graph for this function: Here is the caller graph for this function:
 Here is the caller graph for this function:| 
 | private | 
Definition at line 51 of file Lambert.f90.
| 
 | private | 
Definition at line 51 of file Lambert.f90.
Referenced by lambert_cubetoball().
| 
 | private | 
Definition at line 51 of file Lambert.f90.
Referenced by lambert_balltocube().
| 
 | private | 
Definition at line 51 of file Lambert.f90.
Referenced by lambert_balltocube(), and lambert_cubetoball().
| 
 | private | 
Definition at line 51 of file Lambert.f90.
Referenced by lambert_balltocube(), and lambert_cubetoball().
| 
 | private | 
Definition at line 51 of file Lambert.f90.
Referenced by lambert_cubetoball().
| 
 | private | 
Definition at line 51 of file Lambert.f90.
Referenced by lambert_balltocube().
| 
 | private | 
Definition at line 51 of file Lambert.f90.
Referenced by lambert_balltocube(), and lambert_cubetoball().
| 
 | private | 
Definition at line 51 of file Lambert.f90.
Referenced by lambert_balltocube(), and lambert_cubetoball().
| 
 | private | 
Definition at line 51 of file Lambert.f90.
Referenced by lambert_cubetoball().