2.2.49. addStrainTensors
Purpose
Add column(s) containing given strains based on given stretches of requested deformation gradient column(s).
Usage
> addStrainTensors options ASCII table(s)
Options
-
-u
/ --right
- material strains based on right Cauchy--Green deformation, i.e., C and U
-
-v
/ --left
- spatial strains based on left Cauchy--Green deformation, i.e., B and V
-
-0
/ --logarithmic
- calculate logarithmic strain tensor
-
-1
/ --biot
- calculate biot strain tensor
-
-2
/ --green
- calculate green strain tensor
-
-f
/ --defgrad
[ ['f'] ] - heading(s) of columns containing deformation tensor values
Note
the »material stretch tensor« $ \tnsr U $ following from the »right Cauchy–Green deformation tensor«:
$ \tnsr C = \tnsr F^\text T\tnsr F = \tnsr U^\text T \tnsr R^\text T \tnsr R\,\tnsr U = \tnsr U^2 = \lambda_i^2\,\vctr u_i \otimes \vctr u_i $
the »spatial stretch tensor« $ \tnsr V $ following from the »left Cauchy–Green deformation tensor«:
$ \tnsr B = \tnsr F\,\tnsr F^\text T = \tnsr V \tnsr R \tnsr R^\text T \tnsr V^\text T = \tnsr V^2 = \lambda_i^2\,\vctr v_i \otimes \vctr v_i $
- : $ \ln(\lambda_i)\,\vctr n_i \otimes \vctr n_i $ (»material« or »spatial Hencky«)
- : $ (\lambda_i-1)\,\vctr u_i \otimes \vctr u_i $ (»material Biot«)
$ (1-{\lambda_i}^{-1})\,\vctr v_i \otimes \vctr v_i $ (»spatial Biot«)
- : $ \frac{1}{2}({\lambda_i}^2-1)\,\vctr u_i \otimes \vctr u_i $ (»material Green«)
$\frac{1}{2}(1-{\lambda_i}^{-2})\,\vctr v_i \otimes \vctr v_i $ (»spatial Almansi«)
Strain formulas are taken from chapter 2.3 in
A. Bertram
Elasticity and Plasticity of Large Deformations: An Introduction
3rd edition, Springer, 2012
ISBN:9783642246142