index | slip direction | plane normal |
1 | $[2 \bar 1 \bar 1 0]$ | $(0 0 0 1)$ |
2 | $[\bar 1 2 \bar 1 0]$ | $(0 0 0 1)$ |
3 | $[\bar 1 \bar 1 2 0]$ | $(0 0 0 1)$ |
| ||
Figure 3: Prismatic slip system in hexagonal lattice: $\langle 1 1 \bar 2 0\rangle \{1 0 \bar 1 0\}$ |
index | slip direction | plane normal |
4 | $[2 \bar 1 \bar 1 0]$ | $(0 1 \bar 1 0)$ |
5 | $[\bar 1 2 \bar 1 0]$ | $(\bar 1 0 1 0)$ |
6 | $[\bar 1 \bar 1 2 0]$ | $(1 \bar 1 0 0)$ |
| ||
Figure 4: 2nd order prismatic compound slip system in hexagonal lattice: $\langle \bar 1 1 0 0\rangle \{1 1 \bar 2 0\}$ |
index | slip direction | plane normal |
7 | $[0 1 \bar 1 0]$ | $(2 \bar 1 \bar 1 0)$ |
8 | $[\bar 1 0 1 0]$ | $(\bar 1 2 \bar 1 0)$ |
9 | $[1 \bar 1 0 0]$ | $(\bar 1 \bar 1 2 0)$ |
| ||
Figure 5: 1st order pyramidal slip system in hexagonal lattice: $\langle 1 1 \bar 2 0\rangle \{1 0 \bar 1 1\}$ |
index | slip direction | plane normal |
10 | $[2 \bar 1 \bar 1 0]$ | $(0 1 \bar 1 1)$ |
11 | $[\bar 1 2 \bar 1 0]$ | $(\bar 1 0 1 1)$ |
12 | $[\bar 1 \bar 1 2 0]$ | $(1 \bar 1 0 1)$ |
13 | $[1 1 \bar 2 0]$ | $(\bar 1 1 0 1)$ |
14 | $[\bar 2 1 1 0]$ | $(0 \bar 1 1 1)$ |
15 | $[1 \bar 2 1 0]$ | $(1 0 \bar 1 1)$ |
| ||
Figure 6: 1st order pyramidal <c+a> slip system in hexagonal lattice: $\langle 1 1 \bar 2 3\rangle \{1 0 \bar 1 1\}$ |
index | slip direction | plane normal |
16 | $[2 \bar 1 \bar 1 3]$ | $(\bar 1 1 0 1)$ |
17 | $[1 \bar 2 1 3]$ | $(\bar 1 1 0 1)$ |
18 | $[\bar 1 \bar 1 2 3]$ | $(1 0 \bar 1 1)$ |
19 | $[\bar 2 1 1 3]$ | $(1 0 \bar 1 1)$ |
20 | $[\bar 1 2 \bar 1 3]$ | $(0 \bar 1 1 1)$ |
21 | $[1 1 \bar 2 3]$ | $(0 \bar 1 1 1)$ |
22 | $[\bar 2 1 1 3]$ | $(1 \bar 1 0 1)$ |
23 | $[\bar 1 2 \bar 1 3]$ | $(1 \bar 1 0 1)$ |
24 | $[1 1 \bar 2 3]$ | $(\bar 1 0 1 1)$ |
25 | $[2 \bar 1 \bar 1 3]$ | $(\bar 1 0 1 1)$ |
26 | $[1 \bar 2 1 3]$ | $(0 1 \bar 1 1)$ |
27 | $[\bar 1 \bar 1 2 3]$ | $(0 1 \bar 1 1)$ |
| ||
Figure 7: 2nd order pyramidal <c+a> slip system in hexagonal lattice: $\langle 1 1 \bar 2 3\rangle \{1 1 \bar 2 2\}$ |
index | slip direction | plane normal |
28 | $[2 \bar 1 \bar 1 3]$ | $(\bar 2 1 1 2)$ |
29 | $[\bar 1 2 \bar 1 3]$ | $(1 \bar 2 1 2)$ |
30 | $[\bar 1 \bar 1 2 3]$ | $(1 1 \bar 2 2)$ |
31 | $[\bar 2 1 1 3]$ | $(2 \bar 1 \bar 1 2)$ |
32 | $[1 \bar 2 1 3]$ | $(\bar 1 2 \bar 1 2)$ |
33 | $[1 1 \bar 2 3]$ | $(\bar 1 \bar 1 2 2)$ |
| ||
Figure 8: $K_1$ $\langle 1 0 \bar 1 \bar 1\rangle$ - $n_1$ $\{1 0 \bar 1 2\}$ T1 - Tensile twinning in Co, Mg, Zr, Ti, and Be; compressive twinning in Cd and Zn. |
$\eta_1$ | $K_1$ | $\eta_2$ | $K_2$ |
$\langle \bar 1 0 1 1\rangle$ | $\{1 0 \bar 1 2\}$ | $\langle 1 0 \bar 1 1\rangle$ | $\{1 0 \bar 1 \bar 2\}$ |
index | slip direction | plane normal |
1 | $[1 \bar 1 0 1]$ | $(\bar 1 1 0 2)$ |
2 | $[\bar 1 0 1 1]$ | $(1 0 \bar 1 2)$ |
3 | $[0 1 \bar 1 1]$ | $(0 \bar 1 1 2)$ |
4 | $[\bar 1 1 0 1]$ | $(1 \bar 1 0 2)$ |
5 | $[1 0 \bar 1 1]$ | $(\bar 1 0 1 2)$ |
6 | $[0 \bar 1 1 1]$ | $(0 1 \bar 1 2)$ |
| ||
Figure 9: $K_1$ $\langle \bar 1 \bar 1 2 6\rangle$ - $n_1$ $\{1 1 \bar 2 1\}$ T2 - Tensile twinning in Co, Re, and Zr. |
$\eta_1$ | $K_1$ | $\eta_2$ | $K_2$ |
$\langle \bar 1 \bar 1 2 6\rangle$ | $\{1 1 \bar 2 1\}$ | $\langle 1 1 2 0\rangle$ | $\{0 0 0 2\}$ |
index | slip direction | plane normal |
7 | $[2 \bar 1 \bar 1 6]$ | $(\bar 2 1 1 1)$ |
8 | $[\bar 1 2 \bar 1 6]$ | $(1 \bar 2 1 1)$ |
9 | $[\bar 1 \bar 1 2 6]$ | $(1 1 \bar 2 1)$ |
10 | $[\bar 2 1 1 6]$ | $(2 \bar 1 \bar 1 1)$ |
11 | $[1 \bar 2 1 6]$ | $(\bar 1 2 \bar 1 1)$ |
12 | $[1 1 \bar 2 6]$ | $(\bar 1 \bar 1 2 1)$ |
| ||
Figure 10: $K_1$ $\langle 1 0 \bar 1 \bar 2\rangle$ - $n_1$ $\{1 0 \bar 1 1\}$ C1 - Compressive twinning in Mg. |
$\eta_1$ | $K_1$ | $\eta_2$ | $K_2$ |
$\langle 1 0 \bar 1 \bar 2\rangle$ | $\{1 0 \bar 1 1\}$ | $\langle 3 0 \bar 3 2\rangle$ | $\{1 0 \bar 1 \bar 3\}$ |
index | slip direction | plane normal |
13 | $[\bar 1 1 0 \bar 2]$ | $(\bar 1 1 0 1)$ |
14 | $[1 0 \bar 1 \bar 2]$ | $(1 0 \bar 1 1)$ |
15 | $[0 \bar 1 1 \bar 2]$ | $(0 \bar 1 1 1)$ |
16 | $[1 \bar 1 0 \bar 2]$ | $(1 \bar 1 0 1)$ |
17 | $[\bar 1 0 1 \bar 2]$ | $(\bar 1 0 1 1)$ |
18 | $[0 1 \bar 1 \bar 2]$ | $(0 1 \bar 1 1)$ |
| ||
Figure 11: $K_1$ $\langle 1 1 \bar 2 \bar 3\rangle$ - $n_1$ $\{1 1 \bar 2 2\}$ C2 - Compressive twinning in Ti and Zr. |
$\eta_1$ | $K_1$ | $\eta_2$ | $K_2$ |
$\langle 1 1 \bar 2 \bar 3\rangle$ | $\{1 1 \bar 2 2\}$ | $\langle 2 2 \bar 4 3\rangle$ | $\{1 1 \bar 2 \bar 4\}$ |
index | slip direction | plane normal |
19 | $[2 \bar 1 \bar 1 \bar 3]$ | $(2 \bar 1 \bar 1 2)$ |
20 | $[\bar 1 2 \bar 1 \bar 3]$ | $(\bar 1 2 \bar 1 2)$ |
21 | $[\bar 1 \bar 1 2 \bar 3]$ | $(\bar 1 \bar 1 2 2)$ |
22 | $[\bar 2 1 1 \bar 3]$ | $(\bar 2 1 1 2)$ |
23 | $[1 \bar 2 1 \bar 3]$ | $(1 \bar 2 1 2)$ |
24 | $[1 1 \bar 2 \bar 3]$ | $(1 1 \bar 2 2)$ |
I | Attachment | Action | Size | Date | Who | Comment |
---|---|---|---|---|---|---|
svg | 0_Indexation_topview.svg | manage | 456 bytes | 23 May 2013 - 09:34 | DavidMercier | Indexation of the hexagonal unit cell |
png | HCP_crystal_structure.png | manage | 168 K | 17 Oct 2012 - 17:21 | PhilipEisenlohr | Hexagonal lattice structure |
svg | HCP_crystal_structure.svg | manage | 2 K | 17 Oct 2012 - 17:20 | PhilipEisenlohr | Hexagonal lattice structure (vector-based) |
png | HCP_slip_system_basal.png | manage | 175 K | 17 Oct 2012 - 17:29 | PhilipEisenlohr | Hexagonal slip system basal |
svg | HCP_slip_system_basal.svg | manage | 3 K | 17 Oct 2012 - 17:29 | PhilipEisenlohr | Hexagonal slip system basal (vector-based) |
png | HCP_slip_system_prism2nd_a.png | manage | 194 K | 25 Jun 2013 - 10:33 | DavidMercier | Hexagonal slip system 2nd prismatic [a] |
svg | HCP_slip_system_prism2nd_a.svg | manage | 3 K | 25 Jun 2013 - 10:33 | DavidMercier | Hexagonal slip system 2nd prismatic [a] (vector based) |
png | HCP_slip_system_prism_a.png | manage | 189 K | 17 Oct 2012 - 17:40 | PhilipEisenlohr | Hexagonal slip system prismatic [a] |
svg | HCP_slip_system_prism_a.svg | manage | 3 K | 17 Oct 2012 - 17:39 | PhilipEisenlohr | Hexagonal slip system prismatic [a] (vector-based) |
png | HCP_slip_system_pyramidal1st_a.png | manage | 199 K | 17 Oct 2012 - 20:28 | PhilipEisenlohr | Hexagonal slip system 1st pyramidal [a] |
svg | HCP_slip_system_pyramidal1st_a.svg | manage | 3 K | 17 Oct 2012 - 20:27 | PhilipEisenlohr | Hexagonal slip system 1st pyramidal [a] (vector-based) |
png | HCP_slip_system_pyramidal1st_c+a.png | manage | 203 K | 17 Oct 2012 - 20:19 | PhilipEisenlohr | Hexagonal slip system 1st pyramidal [c+a] |
svg | HCP_slip_system_pyramidal1st_c+a.svg | manage | 3 K | 17 Oct 2012 - 20:19 | PhilipEisenlohr | Hexagonal slip system 1st pyramidal [c+a] (vector-based) |
png | HCP_slip_system_pyramidal2nd_c+a.png | manage | 196 K | 17 Oct 2012 - 20:46 | PhilipEisenlohr | Hexagonal slip system 2nd pyramidal [c+a] |
svg | HCP_slip_system_pyramidal2nd_c+a.svg | manage | 3 K | 17 Oct 2012 - 20:46 | PhilipEisenlohr | Hexagonal slip system 2nd pyramidal [c+a] (vector-based) |
png | HCP_twin_system_compressive_K1(10-11).png | manage | 197 K | 23 May 2013 - 09:59 | DavidMercier | Hexagonal twin system compressive K1(10-11) |
svg | HCP_twin_system_compressive_K1(10-11).svg | manage | 3 K | 23 May 2013 - 10:00 | DavidMercier | Hexagonal twin system compressive K1(10-11) (vector based) |
png | HCP_twin_system_compressive_K1(11-22).png | manage | 196 K | 23 May 2013 - 10:02 | DavidMercier | Hexagonal twin system compressive K1(11-22) |
svg | HCP_twin_system_compressive_K1(11-22).svg | manage | 3 K | 23 May 2013 - 10:03 | DavidMercier | Hexagonal twin system compressive K1(11-22) (vector based) |
png | HCP_twin_system_tensile_K1(-1012).png | manage | 193 K | 23 May 2013 - 12:16 | DavidMercier | Hexagonal twin system tensile K1(-1012) |
svg | HCP_twin_system_tensile_K1(-1012).svg | manage | 3 K | 23 May 2013 - 12:16 | DavidMercier | Hexagonal twin system tensile K1(-1012) (vector-based) |
png | HCP_twin_system_tensile_K1(11-21).png | manage | 226 K | 23 May 2013 - 11:53 | DavidMercier | Hexagonal twin system tensile K1(11-21) |
svg | HCP_twin_system_tensile_K1(11-21).svg | manage | 3 K | 23 May 2013 - 11:53 | DavidMercier | Hexagonal twin system tensile K1(11-21) (vector-based) |