3.1.1. Material configuration file
Purpose
In the most general case a material point in the simulated geometry contains a number of grains with various crystallographic orientations of possibly different phases and constitutive behaviors.
A compositional approach is used to capture this complexity in a flexible manner.
The building blocks for the composition of a microstructure are orientation distributions (termed texture) and constitutive behaviors per each phase.
The continuum mechanical material point then is composed from a particular number of grains reflecting this microstructure and an associated homogenization method.
The material configuration file must be placed as
material.config or
SolverJobName.materialConfig (takes precedence over
material.config) in the working directory. An example file is provided under
DAMASK/config/material.config.
Syntax
All physical quantities in
material.config are specified using base SI units with the exception of angles which are specified in degree.
The
material.config file is
- plain text
- interpreted line by line
- case-insensitive
- ignoring blank lines
- indicating a comment by a leading hash (» # «)
- including files linked by » {path/to/include/here} «
Parts
The material configuration file contains the five parts of
- homogenization
- microstructure
- crystallite
- phase
- texture
Each of those parts contains a library of components necessary to describe the simulated situation.
Parts are introduced by
<PartName>
Sections
Each part holds sections that start with
[SectionName]
Names of sections are recommended to be descriptive and unique per part.
However, sections are internally only referenced by their order, i.e. first, second, third, etc.
Key/value(s)
Each line in a section defines a pair of key and value(s) separated by whitespace characters (tab, space)
exclusiveKey value [optional further values]
(multipleKey1) valueA
(multipleKey1) valueB
(multipleKey2) value
An
exclusiveKey can hold only one item, thus the last definition of possibly multiple ones takes precedence.
A
multipleKey stores an ordered list of items, therefore each line containing such a key adds an item to the end of its list.
Round brackets are used to tag
multipleKeys.
Flags
A line can contain a (single) Boolean flag which is tagged by forward slashes
/boolFlag/
General example
<aPart>
[theFirstSection]
/echo/ # boolean flag---will put this section's content into log file
aKey someValue # assigns "someValue" to "aKey"
(multiItem) 1.23
(multiItem) 3.21 # "multiItem" now contains the list of (1.23, 3.21)
[theNextSection]
aKey someOtherValue
anotherKey 1 33 21 # "anotherKey" expects 4 arguments---they are set to "1", "33", "21", and (automatically) "0"
Homogenization
Boolean flags
Keys
key |
comment |
mech |
type of homogenization used for mechanical fields at material point |
field_damage |
type of field solver used (available option: local) |
field_thermal |
type of field solver used (available option: local) |
Any further keys are dependent on the actual homogenization type.
Example
<homogenization>
[SX]
mech isostrain
nconstituents 1
#field_damage local (uncomment if damage physics is activated)
#field_thermal local (uncomment if thermal physics is activated)
[inParallel]
mech isostrain
nconstituents 3
mapping sum # or 'parallel'
#field_damage local (uncomment if damage physics is activated)
#field_thermal local (uncomment if thermal physics is activated)
[Grain_Cluster]
mech RGC
nconstituents 8
clustersize 2 2 2 # product of these numbers must be equal to Ngrains(!)
clusterorientation 0.0 0.0 0.0 # orientation of cluster in terms of zxz Euler-angles in degree (random if not present)
# clusterorientation 0.0 26.57 0.0 # [012]
# clusterorientation 0.0 45.00 0.0 # [011]
# clusterorientation 0.0 26.57 24.10 # [112]
# clusterorientation 0.0 45.00 19.47 # [122]
# clusterorientation 0.0 45.00 35.26 # [111]
grainsize 4.0e-6 4.0e-6 2.0e-6 # in [m]
overproportionality 2.0e+0 # typical range between 0.001 to 1000
scalingparameter 1.0e+1 # typical range between 0.001 to 1000
(output) constitutivework
(output) magnitudemismatch
(output) penaltyenergy
(output) volumediscrepancy
(output) averagerelaxrate
(output) maximumrelaxrate
[Taylor2]
mech isostrain
nconstituents 2
Microstructure
Boolean flags
flag |
comment |
/echo/ |
copy whole section to output log |
/elementhomogeneous/ |
report identical material point responses within finite element (i.e., copy result of first IP to all) |
Keys
key |
subkey |
comment |
crystallite |
|
section in <crystallite> part to use for output of crystallite quantities that are independent of the constitutive law selected |
(constituent) |
phase |
section in <phase> part for this microstructure constituent |
|
texture |
section in <texture> part for this microstructure constituent |
|
fraction |
fraction that this microstructure constituent takes up (needs to sum to 1.0) |
Example
<microstructure>
[Aluminum_Poly]
/elementhomogeneous/ # set IP response identical per element (copy result of one IP to all)
crystallite 3 # use output defined in section 3 of <crystallite>
(constituent) phase 3 texture 3 fraction 1.0 # monophase microstructure
[Aluminum_cubeSX]
crystallite 2
(constituent) phase 3 texture 2 fraction 1.0
[Aluminum_j2]
crystallite 2
(constituent) phase 1 texture 1 fraction 1.0
[DP_Steel]
crystallite 1
(constituent) phase 1 texture 1 fraction 0.82 # major phase
(constituent) phase 2 texture 1 fraction 0.18 # minor phase (having same texture)
Crystallite
Boolean flags
Keys
key |
subkey |
comment |
(output) |
phase |
phase section ID |
|
orientation |
lattice orientation as quaternion |
|
grainrotation |
deviation from initial orientation as axis (component 1-3) and angle in degree (component 4) |
|
f |
deformation gradient tensor |
|
fe |
elastic deformation gradient tensor |
|
fp |
plastic deformation gradient tensor |
|
p firstpiola 1stpiola |
first PiolaKichhoff stress tensor |
|
s tstar secondpiola 2ndpiola |
second PiolaKichhoff stress tensor |
|
lp |
plastic velocity gradient tensor |
Example:
<crystallite>
[none]
[aLittleSomething]
(output) f
(output) p
[all]
(output) orientation # quaternion
(output) grainrotation # deviation from initial orientation as axis (1-3) and angle in degree (4)
(output) f # deformation gradient tensor; synonyms: "defgrad"
(output) fe # elastic deformation gradient tensor
(output) fp # plastic deformation gradient tensor
(output) p # first Piola-Kichhoff stress tensor; synonyms: "firstpiola", "1stpiola"
(output) s # second Piola-Kichhoff stress tensor; synonyms: "tstar", "secondpiola", "2ndpiola"
(output) lp # plastic velocity gradient tensor
Phase
Boolean flags
Keys
key |
comment |
elasticity |
label of elastic constitutive law |
plasticity |
label of plastic constitutive law |
damage |
label of damage constitutive law |
thermal |
label of thermal constitutive law |
Any further keys are dependent on the selected constitutive laws.
Example
<phase>
[Aluminum_J2isotropic_with_damage_and_thermal _physics]
lattice_structure isotropic
elasticity hooke
plasticity j2
damage isobrittle (available options: isobrittle, isoductile, none(default))
thermal adiabatic (available options: adiabatic, isothermal(default))
#elasticity related parameters and output
c11 110.9e9
c12 58.34e9
#plasticity related parameters and output
(output) flowstress
(output) strainrate
taylorfactor 3
tau0 31e6
gdot0 0.001
n 20
h0 75e6
tausat 63e6
w0 2.25
atol_resistance 1
#damage physics related parameters and output
(output) local_damage
damage_diffusion11 1.0 #
damage_mobility 0.001
#isobrittle parameters
criticalStrainEnergy 10000.0
##isoductile paramaters
#criticalplasticstrain 0.1
atol_damage 0.001
#thermal physics related parameters and output
(output) temperature
thermal_expansion11 0.0000231
thermal_conductivity11 237.0
specific_heat 910.0
mass_density 2700.0
reference_temperature 300.0
atol_adiabatic 1.0
Texture
Boolean flags
Keys
key |
subkey |
comment |
axes |
permutation of ±x ±y ±z |
coordinate system that was used in texture measurement expressed in sample coordinates, e.g: +x +y +z coordinate systems match (default, equivalent to no axes keyword) +y -x +z 90° rotation about z-axis (figure) -x +y +z reflection at yz-plane (figure) |
(gauss) |
|
gauss component for spherical harmonical approximation of texture [2] |
|
phi1 |
$\varphi_1$-Euler angle of component center in degree |
|
Phi |
$\phi$-Euler angle of component center in degree |
|
phi2 |
$\varphi_2$-Euler angle of component center in degree |
|
scatter |
angular scatter of component in degree |
|
fraction |
volume fraction of this texture component |
Example
<texture>
[001]
(gauss) phi1 0.000 Phi 0.0 phi2 0.0 scatter 0.0 fraction 1.0
[101]
(gauss) phi1 0.0 Phi 45.0 phi2 90.000 scatter 0.0 fraction 1.0
[111]
(gauss) phi1 0.0 Phi 54.7356 phi2 45.000 scatter 0.0 fraction 1.0
[123]
(gauss) phi1 209.805 Phi 29.206 phi2 63.435 scatter 2.0 fraction 1.0
Examples
The sample files provided with DAMASK for various materials are given here
Homogenization
Isostrain
Taylor2
### $Id: Homogenization_Isostrain_Taylor2.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[Taylor2]
mech isostrain
nconstituents 2
Parallel3
### $Id: Homogenization_Isostrain_Parallel3.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[Parallel3]
mech isostrain
nconstituents 3
mapping sum # or 'parallel'
SX
### $Id: Homogenization_Isostrain_SX.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[SX]
mech isostrain
nconstituents 1
RGC
8Grains
### $Id: Homogenization_RGC_8Grains.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[8Grains]
mech RGC
nconstituents 8
clustersize 2 2 2 # product of these numbers must be equal to nconstituents(!)
clusterorientation 0.0 0.0 0.0 # orientation of cluster in terms of zxz Euler-angles in degree (random if not present)
# clusterorientation 0.0 26.57 0.0 # [012]
# clusterorientation 0.0 45.00 0.0 # [011]
# clusterorientation 0.0 26.57 24.10 # [112]
# clusterorientation 0.0 45.00 19.47 # [122]
# clusterorientation 0.0 45.00 35.26 # [111]
grainsize 4.0e-6 4.0e-6 2.0e-6 # in [m]
overproportionality 2.0e+0 # typical range between 0.001 to 1000
scalingparameter 1.0e+1 # typical range between 0.001 to 1000
(output) constitutivework
(output) magnitudemismatch
(output) penaltyenergy
(output) volumediscrepancy
(output) averagerelaxrate
(output) maximumrelaxrate
None
Dummy
### $Id: Homogenization_None_Dummy.config 3219 2014-06-18 14:36:29Z MPIE\m.diehl $ ###
[directSX]
mech none
Crystallite
None
### $Id: Crystallite_None.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[none]
All
### $Id: Crystallite_All.config 2963 2014-02-10 15:48:00Z MPIE\f.roters $ ###
[all]
(output) phase
(output) texture
(output) volume
(output) orientation # quaternion
(output) eulerangles # orientation as Bunge triple in degree
(output) grainrotation # deviation from initial orientation as axis (1-3) and angle in degree (4) in crystal reference coordinates
(output) grainrotationx # deviation from initial orientation as angle in degrees around sample reference x axis
(output) grainrotationy # deviation from initial orientation as angle in degrees around sample reference y axis
(output) grainrotationz # deviation from initial orientation as angle in degrees around sample reference z axis
(output) f # deformation gradient tensor; synonyms: "defgrad"
(output) fe # elastic deformation gradient tensor
(output) fp # plastic deformation gradient tensor
(output) e # total strain as Green-Lagrange tensor
(output) ee # elastic strain as Green-Lagrange tensor
(output) p # first Piola-Kichhoff stress tensor; synonyms: "firstpiola", "1stpiola"
(output) s # second Piola-Kichhoff stress tensor; synonyms: "tstar", "secondpiola", "2ndpiola"
(output) lp # plastic velocity gradient tensor
(output) elasmatrix # elastic stiffness matrix
(output) ipcoords # current ip coordinates
aLittleSomething
### $Id: Crystallite_aLittleSomething.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[aLittleSomething]
(output) f
(output) p
Texture
Rolling
### $Id: Texture_Rolling.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[Rolling]
hybridIA DP_EBSD.linearODF
symmetry orthotropic # or monoclinic
axes x +z -y # model coordinate x-, y-, z-axes correspond to which axes during texture measurement?
FiberExample
### $Id: Texture_FiberExample.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[FiberExample]
axes x y -z # model coordinate x-, y-, z-axes correspond to which axes during texture measurement? this was a left handed coordinate system!
# fiber axis in spherical coordinates: alpha crystal system, beta sample system
(fiber) alpha1 123 alpha2 123 beta1 12 beta2 45 scatter 15 fraction 0.333
RandomSingleCrystals
### $Id: Texture_RandomSingleCrystals.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[RandomSingleCrystals]
(random) scatter 0.000 fraction 1.000
Gauss_111
### $Id: Texture_Gauss_111.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[111]
(gauss) phi1 0.000 Phi 54.7356 phi2 45.000 scatter 0.000 fraction 1.000
Gauss_001
### $Id: Texture_Gauss_001.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[001]
(gauss) phi1 0.000 Phi 0.000 phi2 0.000 scatter 0.000 fraction 1.000
Gauss_123
### $Id: Texture_Gauss_123.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[123]
(gauss) phi1 209.805 Phi 29.206 phi2 63.435 scatter 0.000 fraction 1.000
Gauss_101
### $Id: Texture_Gauss_101.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[101]
(gauss) phi1 0.000 Phi 45.000 phi2 90.000 scatter 0.000 fraction 1.000
Microstructure
DP_Steel
### $Id: Microstructure_DP_Steel.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[DP_Steel]
/elementhomogeneous/
crystallite 1
(constituent) phase 1 texture 1 fraction 0.82
(constituent) phase 2 texture 2 fraction 0.18
ElementHomogeneous
### $Id: Microstructure_ElementHomogeneous.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[ElementHomogeneous]
/elementhomogeneous/ # put this flag to set ips identical in one element (something like reduced integration)
crystallite 1
(constituent) phase 1 texture 1 fraction 1.0
Phase
None
J2
Aluminum_Isotropic
### $Id: Phase_J2_Aluminum_Isotropic.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[Aluminum_Isotropic]
# Kuo, J. C., Mikrostrukturmechanik von Bikristallen mit Kippkorngrenzen. Shaker-Verlag 2004. http://edoc.mpg.de/204079
elasticity hooke
plasticity j2
(output) flowstress
(output) strainrate
lattice_structure isotropic
c11 110.9e9
c12 58.34e9
taylorfactor 3
tau0 31e6
gdot0 0.001
n 20
h0 75e6
tausat 63e6
w0 2.25
atol_resistance 1
Phenopowerlaw
Magnesium
#-------------------#
#-------------------#
/echo/
[Mg]
plasticity phenopowerlaw
elasticity hooke
(output) resistance_slip
(output) shearrate_slip
(output) resolvedstress_slip
(output) resistance_twin
(output) shearrate_twin
(output) resolvedstress_twin
lattice_structure hex
covera_ratio 1.62350 # from Tromans 2011, Elastic Anisotropy of HCP Metal Crystals and Polycrystals
c11 59.3e9 # - " -
c33 61.5e9 # - " -
c44 16.4e9 # - " -
c12 25.7e9 # - " -
c13 21.4e9 # - " -
# basal prism prism pyr(a) pyr(c+a) pyr(c+a)
Nslip 3 3 0 6 0 6 # from Agnew et al 2006, Validating a polycrystal model for the elastoplastic response of mg alloy AZ32 using in situ neutron diffraction
# T1 C1 T2 C2
Ntwin 6 0 0 6 # - " -
# basal prism prism pyr(a) pyr(c+a) pyr(c+a)
tau0_slip 10.0e6 55.0e6 0 60.0e6 0.0 60.0e6 # - " - table 1, pyr(a) set to pyr(c+a)
tausat_slip 40.0e6 135.0e6 0 150.0e6 0.0 150.0e6 # - " - table 1, pyr(a) set to pyr(c+a)
# T1 C1 T2 C2
tau0_twin 40e6 0.0 0.0 60.0e6 # - " - table 1, compressive twin guessed by Steffi, tensile twin modified to match experimental results
h0_twintwin 50.0e6 # - " - table 1, same range as theta_0
h0_slipslip 500.0e6 # - " - table 1, same range as theta_0
h0_twinslip 150.0e6 # guessing
interaction_slipslip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # just guessing
interaction_twintwin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # - " -
interaction_sliptwin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # - " -
interaction_twinslip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # - " -
####################################################
# open for discussion
####################################################
atol_resistance 1
atol_shear 0
atol_twinfrac 0
n_twin 20
n_slip 20
gdot0_twin 0.001
gdot0_slip 0.001
twin_b 0
twin_c 0
twin_d 20
twin_e 20
a_slip 2.25
s_pr 10.0 # push-up factor for slip saturation due to twinning
Aluminum
### $Id: Phase_Phenopowerlaw_Aluminum.config 3063 2014-04-02 10:59:14Z MPIE\m.diehl $ ###
[Aluminum]
elasticity hooke
plasticity phenopowerlaw
(output) resistance_slip
(output) shearrate_slip
(output) resolvedstress_slip
(output) accumulatedshear_slip
(output) resistance_twin
(output) shearrate_twin
(output) resolvedstress_twin
(output) accumulatedshear_twin
lattice_structure fcc
Nslip 12 # per family
Ntwin 0 # per family
c11 106.75e9
c12 60.41e9
c44 28.34e9
gdot0_slip 0.001
n_slip 20
tau0_slip 31e6 # per family
tausat_slip 63e6 # per family
a_slip 2.25
gdot0_twin 0.001
n_twin 20
tau0_twin 31e6 # per family
s_pr 0 # push-up factor for slip saturation due to twinning
twin_b 0
twin_c 0
twin_d 0
twin_e 0
h0_slipslip 75e6
h0_sliptwin 0
h0_twinslip 0
h0_twintwin 0
interaction_slipslip 1 1 1.4 1.4 1.4 1.4
interaction_sliptwin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
interaction_twinslip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
interaction_twintwin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
atol_resistance 1
Gold
### $Id: Phase_Phenopowerlaw_Gold.config 3019 2014-03-13 12:12:19Z MPIE\d.ma $ ###
[gold_phenopowerlaw]
# slip only
elasticity hooke
plasticity phenopowerlaw
(output) resistance_slip
(output) shearrate_slip
(output) resolvedstress_slip
(output) resistance_twin
(output) shearrate_twin
(output) resolvedstress_twin
lattice_structure fcc
Nslip 12 # per family
Ntwin 0 # per family
c11 191.0e9
c12 162.0e9
c44 42.20e9
gdot0_slip 0.001
n_slip 83.3
tau0_slip 26.25e6 # per family
tausat_slip 53.00e6 # per family
a_slip 1.0
gdot0_twin 0.001
n_twin 20
tau0_twin 0 # per family
s_pr 0 # push-up factor for slip saturation due to twinning
twin_b 0
twin_c 0
twin_d 0
twin_e 0
h0_slipslip 75e6
h0_sliptwin 0
h0_twinslip 0
h0_twintwin 0
interaction_slipslip 1 1 1.4 1.4 1.4 1.4
interaction_sliptwin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
interaction_twinslip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
interaction_twintwin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
atol_resistance 1
BCC-Ferrite
### $Id: Phase_Phenopowerlaw_BCC-Ferrite.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[BCC_Ferrite]
elasticity hooke
plasticity phenopowerlaw
lattice_structure bcc
Nslip 12 0 0 0 # per family
Ntwin 0 0 0 0 # per family
c11 233.3e9
c12 135.5e9
c44 118.0e9
gdot0_slip 0.001
n_slip 20
tau0_slip 88.0e6 0 0 0 # per family
tausat_slip 205.0e6 0 0 0 # per family
gdot0_twin 0.001
n_twin 20
tau0_twin 31.0e6 0 0 0 # per family
s_pr 0 # push-up factor for slip saturation due to twinning
twin_b 0
twin_c 0
twin_d 0
twin_e 0
h0_slipslip 495.0e6
h0_sliptwin 0
h0_twinslip 0
h0_twintwin 0
interaction_slipslip 1 1 1.4 1.4 1.4 1.4
interaction_sliptwin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
interaction_twinslip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
interaction_twintwin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a_slip 1.0
atol_resistance 1
BCC-Martensite
### $Id: Phase_Phenopowerlaw_BCC-Martensite.config 2754 2013-11-27 17:49:34Z MPIE\m.diehl $ ###
[BCC_Martensite]
plasticity phenopowerlaw
lattice_structure bcc
Nslip 12 0 0 0 # per family
Ntwin 0 0 0 0 # per family
c11 417.4e9
c12 242.4e9
c44 211.1e9
gdot0_slip 0.001
n_slip 20
tau0_slip 575.00e6 0 0 0 # 460.0e6 # per family
tausat_slip 1280.0e6 0 0 0 # 1020.0e6 # per family
gdot0_twin 0.001
n_twin 20
tau0_twin 31.0e6 0 0 0 # per family
s_pr 0 # push-up factor for slip saturation due to twinning
twin_b 0
twin_c 0
twin_d 0
twin_e 0
h0_slipslip 53500.0e6 # 35000.0e6
h0_sliptwin 0
h0_twinslip 0
h0_twintwin 0
interaction_slipslip 1 1 1.4 1.4 1.4 1.4
interaction_sliptwin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
interaction_twinslip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
interaction_twintwin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a_slip 2.0
atol_resistance 1
cpTi-alpha
### $Id: Phase_Phenopowerlaw_cpTi-alpha.config 3048 2014-03-31 16:49:05Z MPIE\d.mercier $ ###
[cpTi-alpha]
plasticity phenopowerlaw
elasticity hooke
# (output) resistance_slip
# (output) shearrate_slip
# (output) resolvedstress_slip
# (output) resistance_twin
# (output) shearrate_twin
# (output) resolvedstress_twin
lattice_structure hex
covera_ratio 1.587
# M. Levy, Handbook of Elastic Properties of Solids, Liquids, and Gases (2001)
c11 160.0e9
c12 90.0e9
c13 66.0e9
c33 181.7e9
c44 46.5e9
# C. Zambaldi, "Orientation informed nanoindentation of a-titanium: Indentation pileup in hexagonal metals deforming by prismatic slip", J. Mater. Res., Vol. 27, No. 1, Jan 14, 2012
gdot0_slip 0.001
n_slip 20
nslip 3 3 0 6 0 0
tau0_slip 349.3e6 150e6 0 1107.9e6 0 0
tausat_slip 568.6e6 1502.2e6 0 3420.1e6 0 0
a_slip 2
ntwin 0 0 0 0
gdot0_twin 0.001 0 0 0
n_twin 20
tau0_twin 31e6 0 0 0 0
s_pr 0
twin_b 0
twin_c 0
twin_d 0
twin_e 0
h0_slipslip 15e6
h0_sliptwin 15e6
h0_twinslip 15e6
h0_twintwin 15e6
atol_resistance 1
#atol_shear 1e-6
#atol_twinfrac 1e-7
interaction_slipslip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
interaction_sliptwin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
interaction_twinslip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
interaction_twintwin 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#nonschmid_coefficients 0
Dislotwin
Tungsten
### $Id: Phase_Dislotwin_Tungsten.config 3026 2014-03-17 15:42:46Z MPIE\f.roters $ ###
[Tungsten]
elasticity hooke
plasticity dislotwin
### Material parameters ###
lattice_structure bcc
C11 523.0e9 # From Marinica et al. Journal of Physics: Condensed Matter(2013)
C12 202.0e9
C44 161.0e9
grainsize 2.0e-5 # Average grain size [m]
SolidSolutionStrength 1.5e8 # Strength due to elements in solid solution
### Dislocation glide parameters ###
#per family
Nslip 12
slipburgers 2.72e-10 # Burgers vector of slip system [m]
rhoedge0 1.0e12 # Initial edge dislocation density [m/m**3]
rhoedgedip0 1.0 # Initial edged dipole dislocation density [m/m**3]
v0 1.0e-4 # Initial glide velocity [m/s]
Qedge 2.725e-19 # Activation energy for dislocation glide [J]
p_slip 0.78 # p-exponent in glide velocity
q_slip 1.58 # q-exponent in glide velocity
tau_peierls 2.03e9 # peierls stress (for bcc)
dipoleformationfactor 0 # to have hardening due to dipole formation off
#hardening
CLambdaSlip 10.0 # Adj. parameter controlling dislocation mean free path
D0 4.0e-5 # Vacancy diffusion prefactor [m**2/s]
Qsd 4.5e-19 # Activation energy for climb [J]
Catomicvolume 1.0 # Adj. parameter controlling the atomic volume [in b]
Cedgedipmindistance 1.0 # Adj. parameter controlling the minimum dipole distance [in b]
interaction_slipslip 1 1 1.4 1.4 1.4 1.4
TWIP_Steel_FeMnC
### $Id: Phase_Dislotwin_TWIP_Steel_FeMnC.config 3063 2014-04-02 10:59:14Z MPIE\m.diehl $ ###
[TWIP_Steel_FeMnC]
elasticity hooke
plasticity dislotwin
#(output) edge_density
#(output) dipole_density
#(output) shear_rate_slip
#(output) accumulated_shear_slip
#(output) mfp_slip
#(output) resolved_stress_slip
#(output) threshold_stress_slip
#(output) twin_fraction
#(output) shear_rate_twin
#(output) accumulated_shear_twin
#(output) mfp_twin
#(output) resolved_stress_twin
#(output) threshold_stress_twin
#(output) shear_rate_shearband
#(output) resolved_stress_shearband
#(output) sb_eigenvalues
#(output) sb_eigenvectors
### Material parameters ###
lattice_structure fcc
C11 175.0e9 # From Music et al. Applied Physics Letters 91, 191904 (2007)
C12 115.0e9
C44 135.0e9
grainsize 2.0e-5 # Average grain size [m]
SolidSolutionStrength 1.5e8 # Strength due to elements in solid solution
### Dislocation glide parameters ###
Nslip 12
slipburgers 2.56e-10 # Burgers vector of slip system [m]
rhoedgedip0 1.0 # Initial dislocation density [m/m**3]
rhoedge0 1.0e12 # Initial dislocation density [m/m**3]
v0 1.0e-4 # Initial glide velocity [m/s]
Qedge 3.7e-19 # Activation energy for dislocation glide [J]
p_slip 1.0 # p-exponent in glide velocity
q_slip 1.0 # q-exponent in glide velocity
# hardening of glide
CLambdaSlip 10.0 # Adj. parameter controlling dislocation mean free path
D0 4.0e-5 # Vacancy diffusion prefactor [m**2/s]
Qsd 4.5e-19 # Activation energy for climb [J]
Catomicvolume 1.0 # Adj. parameter controlling the atomic volume [in b]
Cedgedipmindistance 1.0 # Adj. parameter controlling the minimum dipole distance [in b]
atol_rho 1.0
interactionSlipSlip 0.122 0.122 0.625 0.07 0.137 0.122 # Interaction coefficients (Kubin et al. 2008)
### Shearband parameters ###
shearbandresistance 180e6
shearbandvelocity 1e-4 # set to zero to turn shear banding of
QedgePerSbSystem 3.7e-19 # Activation energy for shear banding [J]
p_shearband 1.0 # p-exponent in glide velocity
q_shearband 1.0 # q-exponent in glide velocity
### Twinning parameters ###
Ntwin 12
twinburgers 1.47e-10 # Burgers vector of twin system [m]
twinsize 5.0e-8 # Twin stack mean thickness [m]
L0 442.0 # Length of twin nuclei in Burgers vectors
maxtwinfraction 1.0 # Maximum admissible twin volume fraction
xc 1.0e-9 # critical distance for formation of twin nucleus
VcrossSlip 1.67e-29 # cross slip volume
r_twin 10.0 # r-exponent in twin formation probability
Cmfptwin 1.0 # Adj. parameter controlling twin mean free path
Cthresholdtwin 1.0 # Adj. parameter controlling twin threshold stress
interactionSlipTwin 0.0 1.0 1.0 # Dislocation-Twin interaction coefficients
interactionTwinTwin 0.0 1.0 # Twin-Twin interaction coefficients
atol_twinFrac 1.0e-7
SFE_0K -0.0396 # stacking fault energy at zero K; TWIP steel: -0.0526; Cu: -0.0396
dSFE_dT 0.0002 # temperature dependance of stacking fault energy
Nonlocal
Aluminum
### $Id: Phase_Nonlocal_Aluminum.config 2828 2014-01-07 15:55:28Z MPIE\c.kords $ ###
[Aluminum]
elasticity hooke
plasticity nonlocal
/nonlocal/
(output) rho
(output) rho_edge
(output) rho_screw
(output) rho_sgl
(output) rho_sgl_edge
(output) rho_sgl_edge_pos
(output) rho_sgl_edge_neg
(output) rho_sgl_screw
(output) rho_sgl_screw_pos
(output) rho_sgl_screw_neg
(output) rho_sgl_mobile
(output) rho_sgl_edge_mobile
(output) rho_sgl_edge_pos_mobile
(output) rho_sgl_edge_neg_mobile
(output) rho_sgl_screw_mobile
(output) rho_sgl_screw_pos_mobile
(output) rho_sgl_screw_neg_mobile
(output) rho_sgl_immobile
(output) rho_sgl_edge_immobile
(output) rho_sgl_edge_pos_immobile
(output) rho_sgl_edge_neg_immobile
(output) rho_sgl_screw_immobile
(output) rho_sgl_screw_pos_immobile
(output) rho_sgl_screw_neg_immobile
(output) rho_dip
(output) rho_dip_edge
(output) rho_dip_screw
(output) excess_rho
(output) excess_rho_edge
(output) excess_rho_screw
(output) rho_forest
(output) delta
(output) delta_sgl
(output) delta_dip
(output) shearrate
(output) resolvedstress
(output) resolvedstress_back
(output) resolvedstress_external
(output) resistance
(output) rho_dot
(output) rho_dot_sgl
(output) rho_dot_sgl_mobile
(output) rho_dot_dip
(output) rho_dot_gen
(output) rho_dot_gen_edge
(output) rho_dot_gen_screw
(output) rho_dot_sgl2dip
(output) rho_dot_sgl2dip_edge
(output) rho_dot_sgl2dip_screw
(output) rho_dot_ann_ath
(output) rho_dot_ann_the
(output) rho_dot_ann_the_edge
(output) rho_dot_ann_the_screw
(output) rho_dot_edgejogs
(output) rho_dot_flux
(output) rho_dot_flux_mobile
(output) rho_dot_flux_edge
(output) rho_dot_flux_screw
(output) velocity_edge_pos
(output) velocity_edge_neg
(output) velocity_screw_pos
(output) velocity_screw_neg
(output) slipdirection.x
(output) slipdirection.y
(output) slipdirection.z
(output) slipnormal.x
(output) slipnormal.y
(output) slipnormal.z
(output) fluxDensity_edge_pos.x
(output) fluxDensity_edge_pos.y
(output) fluxDensity_edge_pos.z
(output) fluxDensity_edge_neg.x
(output) fluxDensity_edge_neg.y
(output) fluxDensity_edge_neg.z
(output) fluxDensity_screw_pos.x
(output) fluxDensity_screw_pos.y
(output) fluxDensity_screw_pos.z
(output) fluxDensity_screw_neg.x
(output) fluxDensity_screw_neg.y
(output) fluxDensity_screw_neg.z
(output) maximumDipoleHeight_edge
(output) maximumDipoleHeight_screw
(output) accumulatedshear
(output) dislocationstress
lattice_structure fcc
Nslip 12 # number of slip systems
c11 106.75e9 # elastic constants
c12 60.41e9
c44 28.34e9
burgers 2.86e-10 # Burgers vector in m
rhoSglEdgePos0 0.25e10 # Initial positive edge single dislocation density in m/m**3 (per slip family)
rhoSglEdgeNeg0 0.25e10 # Initial negative edge single dislocation density in m/m**3 (per slip family)
rhoSglScrewPos0 0.25e10 # Initial positive screw single dislocation density in m/m**3 (per slip family)
rhoSglScrewNeg0 0.25e10 # Initial negative screw single dislocation density in m/m**3 (per slip family)
rhoDipEdge0 1e8 # Initial edge dipole dislocation density in m/m**3 (per slip family)
rhoDipScrew0 1e8 # Initial screw dipole dislocation density in m/m**3 (per slip family)
rhoSglScatter 0 # standard deviation of scatter in initial single dislocation density
#rhoSglRandom 1e12 # randomly distributed total dislocation density (sum over all slip systems and types) in m/m**3
#rhoSglRandomBinning 1 # binning size of randomly distributed dislocations (number of dislocations per ip volume)
minimumDipoleHeightEdge 2e-9 # minimum distance for stable edge dipoles in m (per slip family)
minimumDipoleHeightScrew 2e-9 # minimum distance for stable screw dipoles in m (per slip family)
lambda0 80 # prefactor for mean free path
edgeMultiplication 0.1 # factor to which edges contribute to multiplication
atomicVolume 1.7e-29 # atomic volume in m**3
selfdiffusionPrefactor 1e-4 # prefactor for self-diffusion coefficient in m**2/s
selfdiffusionEnergy 2.3e-19 # activation enthalpy for seld-diffusion in J
solidSolutionEnergy 2e-19 # activation energy of solid solution particles in J
solidSolutionConcentration 1e-5 # concentration of solid solution in parts per b^3
solidSolutionSize 2 # size of solid solution obstacles in multiples of burgers vector length
peierlsStressEdge 1e5 # Peierls stress for edges in Pa (per slip family)
peierlsStressScrew 1e5 # Peierls stress for screws in Pa (per slip family)
doublekinkWidth 10 # width of double kinks in multiples of burgers vector length b
viscosity 1e-4 # viscosity for dislocation glide in Pa s
p 1 # exponent for thermal barrier profile
q 1 # exponent for thermal barrier profile
attackFrequency 50e9 # attack frequency in Hz
surfaceTransmissivity 1.0 # transmissivity of free surfaces for dislocation flux
grainboundaryTransmissivity 0.0 # transmissivity of grain boundaries for dislocation flux (grain bundaries are identified as interfaces with different textures on both sides); if not set or set to negative number, the subroutine automatically determines the transmissivity at the grain boundary
interaction_SlipSlip 0 0 0.625 0.07 0.137 0.122 # Dislocation interaction coefficient
linetension 0.8 # constant indicating the effect of the line tension on the hardening coefficients (0 to 1)
edgejog 1.0 # fraction of annihilated screw dipoles that forms edge jogs (0 to 1)
shortRangeStressCorrection 0 # switch for use of short range correction stress
cutoffRadius 1e-3 # cutoff radius for dislocation stress in m
CFLfactor 2.0 # safety factor for CFL flux check (numerical parameter)
significantRho 1e6 # minimum dislocation density considered relevant in m/m**3
#significantN 0.1 # minimum dislocation number per ip considered relevant
aTol_density 1e4 # absolute tolerance for dislocation density in m/m**3
aTol_shear 1e-20 # absolute tolerance for plasgtic shear
randomMultiplication 0 # switch for probabilistic extension of multiplication rate
References
[1] |
P. Eisenlohr, F. Roters: Selecting sets of discrete orientations for accurate texture reconstruction, Computational Materials Science 42 (2008) 670 - 678 |
[2] |
K. Helming, R. A. Schwarzer, B. Rauschenbach, S. Geier, B. Leiss H. Wenk, K. Ullemeier, J. Heinitz: Texture estimates by means of components, Z. Metallkunde 85 (1994) 545 - 553 |