The following table lists conversion rules for the three stress measures
- first Piola-Kirchhoff stress $\tnsr P$,
- second Piola-Kirchhoff stress $\tnsr S$, and
- Cauchy stress $\tnsr \sigma$,
based on the multiplicative decomposition of the deformation gradient $\tnsr F$ into elastic $\tnsr F_\text e$ and plastic part $\tnsr F_\text p$.
|
$\tnsr P$ |
$\tnsr S$ |
$\tnsr\sigma$ |
$\tnsr P=$ |
$\tnsr P$ |
$\operatorname{det}(\tnsr F_\text p) \tnsr F_\text e \tnsr\sigma {\tnsr F_\text p}^{-\text T}$ |
$\operatorname{det}(\tnsr F) \tnsr\sigma {\tnsr F}^{-\text T}$ |
$\tnsr S=$ |
$\frac{1}{\operatorname{det}(\tnsr F_\text p)} {\tnsr F_\text e}^{-1} \tnsr P {\tnsr F_\text p}^{\text T}$ |
$\tnsr S$ |
$\operatorname{det}(\tnsr F_\text e) {\tnsr F_\text e}^{-1} \tnsr\sigma {\tnsr F_\text e}^{-\text T}$ |
$\tnsr\sigma=$ |
$\frac{1}{\operatorname{det}(\tnsr F)} \tnsr P {\tnsr F}^{\text T}$ |
$\frac{1}{\operatorname{det}(\tnsr F_\text e)} \tnsr F_\text e \tnsr S {\tnsr F_\text e}^{\text T}$ |
$\tnsr\sigma$ |