\begin{eqnarray*} \tnsrfour C &= \tnsr A \otimes \tnsr B &= A^{ij} B^{kl}\,\vctr g_i\otimes\vctr g_j\otimes\vctr g_k\otimes\vctr g_l \\ \tnsrfour C &= \tnsr A \odot \tnsr B &= A^{ij} B^{kl}\,\vctr g_i\otimes\vctr g_k\otimes\vctr g_l\otimes\vctr g_j \\ & &= A^{il} B^{jk}\,\vctr g_i\otimes\vctr g_j\otimes\vctr g_k\otimes\vctr g_l \\ \tnsrfour C &= \tnsr A \boxtimes \tnsr B &= A^{ij} B^{kl}\,\vctr g_i\otimes\vctr g_k\otimes\vctr g_j\otimes\vctr g_l \\ & &= A^{ik} B^{jl}\,\vctr g_i\otimes\vctr g_j\otimes\vctr g_k\otimes\vctr g_l \end{eqnarray*}
\begin{eqnarray*} \tnsrfour C &= \tnsrfour A :\tnsrfour B &= A^{ijkl} B_{klmn}\,\vctr g_i\otimes\vctr g_j\otimes\vctr g^m\otimes\vctr g^n \\ \tnsr C &= \tnsrfour A \dblContInOut \tnsr B &= A^{ijkl} B_{jk}\,\vctr g_i\otimes\vctr g_l \\ \tnsr C &= \tnsr A \dblContInOut \tnsrfour B &= A_{il} B^{ijkl}\,\vctr g_j\otimes\vctr g_k \\ \tnsrfour C &= \tnsrfour A \dblContInOut \tnsrfour B &= A^{ijkl} B_{jmnk}\,\vctr g_i\otimes\vctr g^m\otimes\vctr g^n\otimes\vctr g_l \\ \tnsr C &= \tnsrfour A \dblContOutIn \tnsr B &= A^{ijkl} B_{il}\,\vctr g_j\otimes\vctr g_k \\ \tnsr C &= \tnsr A \dblContOutIn \tnsrfour B &= A_{jk} B^{ijkl}\,\vctr g_i\otimes\vctr g_l \\ \tnsrfour C &= \tnsrfour A \dblContOutIn \tnsrfour B &= A^{ijkl} B_{miln}\,\vctr g^m\otimes\vctr g_j\otimes\vctr g_k\otimes\vctr g^n \end{eqnarray*}
\begin{align*} \tnsrfour I &= \tnsr I\otimes\tnsr I = \vctr g_i\otimes\vctr g^i\otimes\vctr g_j\otimes\vctr g^j \\ \tnsrfour I^\text R &= \tnsr I\boxtimes\tnsr I = \vctr g_i\otimes\vctr g^j\otimes\vctr g^i\otimes\vctr g_j \\ \tnsrfour I^\text L &= \tnsr I\odot\tnsr I = \vctr g_i\otimes\vctr g_j\otimes\vctr g^j\otimes\vctr g^i \end{align*}
\begin{align*} \tnsr A,_{\scriptscriptstyle\tnsr B} &= \frac{\partial A_{ij}}{\partial B_{kl}}\,\vctr g^i\otimes\vctr g_k\otimes\vctr g_l\otimes\vctr g^j \end{align*} \begin{align*} \tnsr A,_{\scriptscriptstyle\tnsr B} &= \tnsr A,_{\scriptscriptstyle\tnsr C}\dblContInOut\tnsr C,_{\scriptscriptstyle\tnsr B} \\ (\tnsr A \tnsr B),_{\scriptscriptstyle\tnsr C} &= \tnsr A,_{\scriptscriptstyle\tnsr C}\tnsr B + \tnsr A\tnsr B,_{\scriptscriptstyle\tnsr C} \\ (\tnsr A : \tnsr B),_{\scriptscriptstyle\tnsr C} &= \tnsr A,_{\scriptscriptstyle\tnsr C}\dblContOutIn\tnsr B + \tnsr A\dblContInOut\tnsr B,_{\scriptscriptstyle\tnsr C} \\ (f \tnsr A),_{\scriptscriptstyle\tnsr C} &= \tnsr A\otimes f,_{\scriptscriptstyle\tnsr C} + f\tnsr A,_{\scriptscriptstyle\tnsr C} \end{align*}